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This paper presents novel bilevel leader-follower portfolio selection problems in which the financial in- 

termediary becomes a decision-maker. This financial intermediary decides on the unit transaction costs 

for investing in some securities, maximizing its benefits, and the investor chooses his optimal portfolio, 

minimizing risk and ensuring a given expected return. Hence, transaction costs become decision variables 

in the portfolio problem, and two levels of decision-makers are incorporated: the financial intermediary 

and the investor. These situations give rise to general Nonlinear Programming formulations in both levels 

of the decision process. We present different bilevel versions of the problem: financial intermediary- 

leader, investor-leader, and social welfare; besides, their properties are analyzed. Moreover, we develop 

Mixed Integer Linear Programming formulations for some of the proposed problems and effective algo- 

rithms for some others. Finally, we report on some computational experiments performed on data taken 

from the Dow Jones Industrial Average, and analyze and compare the results obtained by the different 

models. 
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1. Introduction 

The classical model in portfolio optimization was originally pro-

posed by Markowitz (1952) . This model has served as the ini-

tial point for the development of modern portfolio theory. Over

time, portfolio optimization problems have become more realis-

tic, incorporating real-life aspects that make the resulting portfo-

lios more cost-effective than the alternatives that do not consider

them ( Castro, Gago, Hartillo, Puerto, & Ucha, 2011; Kolm, Tütüncü,

& Fabozzi, 2014; Lynch & Tan, 2011; Mansini, Ogryczak, & Speranza,

2014; 2015b ). Transaction costs can be seen as one of these impor-

tant actual features to be included in portfolio optimization. These

costs are those incurred by the investors when buying and selling

assets on financial markets, charged by the brokers, the financial

institutions or the market makers playing the role of intermedi-

ary. Transaction costs usually include banks and brokers’ commis-

sions, fees, etc. These commissions or fees have a direct impact on

the portfolio, especially for individual or small investors, since they
� This research has been funded by the Spanish Ministry of Science and Technol- 

ogy project MTM2016-74983-C2-1-R. 
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ill determine the net returns, reducing them and decreasing also

he budget available for future investments ( Baule, 2010; Baumann

 Trautmann, 2013; Liu & Loewenstein, 2002 ). 

To the best of our knowledge, in the existing literature, transac-

ion costs are assumed to be given ( Davis & Norman, 1990; Korn,

998; Lobo, Fazel, & Boyd, 2007; Magill & Constantinides, 1976;

ansini et al., 2014; 2015b; Morton & Pliska, 1995 ). They can be

 fixed cost applied to each selected security in the portfolio;

r a variable cost to be paid which depends on the amount in-

ested in each security included in the portfolio (see e.g. ( A. Valle,

eade, & E. Beasley, 2014; Baule, 2010; Baumann & Trautmann,

013; Kellerer, Mansini, & Speranza, 20 0 0; Mansini et al., 2014;

015b; Woodside-Oriakhi, Lucas, & Beasley, 2013 ) and the refer-

nces therein). This dependence can be proportional to the invest-

ent or given by a fixed cost that is only charged if the amount

nvested exceeds a given threshold, or by some other functional

orm (see e.g. Baule, 2010; Konno, Akishino, & Yamamoto, 2005;

ansini et al., 2014; Mansini, Ogryczak, & Speranza, 2015b; Thi,

oeini, & Dinh, 2009 and the references therein). But in any case,

nit transaction costs are known and predetermined in the opti-

ization process. Nevertheless, it is meaningful to analyze the sit-

ations where transaction costs can be decision variables set by

nancial institutions so that they are trying to maximize its profit

https://doi.org/10.1016/j.ejor.2019.12.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.12.039&domain=pdf
https://doi.org/10.1016/j.ejor.2019.12.039


M. Leal, D. Ponce and J. Puerto / European Journal of Operational Research 284 (2020) 712–727 713 

a  

t

 

b  

a  

d  

v  

o  

i  

c  

p  

w  

t  

i  

v  

o  

c  

t  

o  

t  

(  

e  

I  

t  

c

 

e  

f  

b  

i  

y  

i  

t  

p  

h  

a  

u  

M  

K  

l  

m  

e  

a

 

(  

p  

t  

i  

w  

i  

b  

f  

l  

o  

p  

a  

b

 

t  

S  

t  

g  

t  

g  

a  

p

d  

a  

a  

S  

t  

v  

I

2

 

v  

c  

I  

t

 

f  

{  

e  

c  

a  

s  

b

 

i  

t  

n

x

T  

t  

w  

p  

i  

t  

b

 

b  

x  

u  

c  

m  

l

m

 

v  

l  

r  

c  

c

 

c  
s part of the decision process that leads to optimal portfolios for

he investors. 

The portfolio optimization problem considered in this paper is

ased on a single-period model of investment and incorporates

 transaction costs setting phase. We assume that there are two

ecision-makers involved in the situation: on the one hand, the in-

estor and on the other hand, the broker specialist, market maker

r financial institution (that we will call from now on, for simplic-

ty broker–dealer). At the beginning of a period, an investor allo-

ates his capital among various assets and during the investment

eriod, each asset generates a random rate of return. Moreover,

e consider that the broker–dealer can charge some unit transac-

ion costs on the securities selected by the investor trying to max-

mize its benefits but anticipating the rational response of the in-

estor. This is a pricing phase in which the broker–dealer decides

n how much is going to charge to the investor for the traded se-

urities. Considering unit transaction costs as a decision variable of

he model is a novel element in portfolio optimization and this is

ne of the main contributions of this paper. Then, at the end of

he period, the result for the investor is a variation of his capital

increased or decreased) which is measured by the weighted av-

rage of the individual rates of return minus commissions or fees.

n addition, the result for the broker–dealer is the amount paid by

he investor, which depends on the revcosts set on the traded se-

urities included in the portfolio chosen by the investor. 

Based on the structure of financial markets, we assume a hi-

rarchical relationship between the parties involved in the port-

olio problem, that is, we define a natural problem in which the

roker–dealer sets the unit transaction costs first, trying to antic-

pate the rational response of the investor. This hierarchical anal-

sis of the portfolio problem has not been addressed before and

t is another contribution of our paper. Once the costs are fixed,

he investor chooses his optimal portfolio. For the sake of com-

leteness, we also analyze the case in which the investor chooses

is portfolio first, and after that, the broker–dealer sets the trans-

ction costs. In order to model these hierarchical structures, we

se a bilevel optimization approach (see e.g. Bard, 2013; Colson,

arcotte, & Savard, 2005; Labbé & Violin, 2016; Sinha, Pekka, &

alyanmoy, 2017 ). Furthermore, we consider a social welfare prob-

em where both, broker–dealer and investor, cooperate to maxi-

ize their returns. We assume in the different problems that all

conomic or financial information is common knowledge and that

ll the decision-makers in the problem have access to it. 

The contributions of this paper can be summarized as follows:

1) it incorporates for the first time the above hierarchical ap-

roaches with two-levels of decision-makers on portfolio optimiza-

ion problems (the broker–dealer sets unit transaction costs try-

ng to maximize its benefits, whereas the investor minimizes risk

hile ensuring a given expected return ( Benati, 2003; 2014 )); (2) it

ntroduces transaction costs as decision variables controlled by the

roker–dealer; and (3) it develops different bilevel programming

ormulations to obtain optimal solutions for the considered prob-

ems. This paper introduces new models for the bilevel portfolio

ptimization problem. As far as we know, bilevel models for the

ortfolio selection that set unit transaction costs as decision vari-

bles of the problem have not been considered in the literature

efore. 

The rest of the paper is organized as follows. Section 2 states

he preliminaries and the notation used throughout the paper. In

ection 3 , we present the problem in which the broker–dealer is

he leader and we develop two different Mixed Integer Linear Pro-

ramming (MILP) formulations to solve such problem. Section 4 in-

roduces the investor-leader problem and develops a Linear Pro-

ramming (LP) formulation for it. In the more general case where

dditional constraints are required on the portfolio selection, it is

resented a convergent iterative algorithm based on an “ad hoc”
ecomposition of the model. Next, in Section 5 , it is addressed

 social welfare problem. There, we propose a MILP formulation

nd an algorithm based on Benders decomposition for solving it.

ection 6 is devoted to reporting on the computational study of

he different problems and solution methods discussed in the pre-

ious sections. Our results are based on data taken from Dow Jones

ndustrial Average. Finally, Section 7 concludes the paper. 

. Preliminaries 

Let N = { 1 , . . . , n } be the set of securities considered for an in-

estment, B ⊆ N a subset of securities in which the broker–dealer

an charge unit transaction costs to the investor and R : = N \ { B } .
n most cases, B = N, but there is no loss of generality to consider

hat B is a proper subset of N . 

First, we assume that the broker–dealer can price security j ∈ B

rom a discrete set, with cardinality s j , of admissible costs, P j =
 c j1 , . . . , c js j } , and the broker–dealer’s goal is to maximize its ben-

fit. Further, we consider proportional transaction costs: the cost

harged by the broker–dealer per security is proportional to the

mount invested in such security. Hence, the broker–dealer’s deci-

ion variables are unit transaction costs (commissions, fees, ...) to

e charged (proportionally) to the securities. 

Let x = (x j ) j=1 , ... ,n denote a vector of decision variables: x j be-

ng the weight of security j in the portfolio. We only assume that

he invested capital can not exceed the available budget and non-

egativity, i.e., 

 : 

n ∑ 

j=1 

x j ≤ 1 , x j ≥ 0 , for j = 1 , . . . , n. 

his budget constraint is the minimum requirement on the struc-

ure of the portfolios. Nevertheless and without loss of generality,

e could have assumed that some other linear constraints are im-

osed on the structure of the requested portfolio x . All the results

n this paper can be easily extended to more general situations

hat consider polyhedral sets of constraints defining the admissi-

le set of portfolios. 

Let us denote by p j the unit transaction cost chosen by the

roker–dealer to charge security j , j ∈ B . Then, for a given portfolio

 (fixed), the problem faced by the broker–dealer can be modeled

sing the following set of binary decision variables: a jk = 1 if cost

 jk is assigned to p j , this is, if p j = c jk ; a jk = 0 otherwise. Thus, to

aximize his profit the broker–dealer solves the following prob-

em: 

ax 
∑ 

j∈ B 
p j x j (PricP ) 

s.t. p j = 

s j ∑ 

k =1 

c jk a jk , j ∈ B, (1) 

s j ∑ 

k =1 

a jk = 1 , j ∈ B, (2) 

a jk ∈ { 0 , 1 } , j ∈ B, k = 1 , . . . , s j . (3) 

If no further constraints are imposed on costs the above is a

alid formulation. However, in general, we will assume without

oss of generality that the set of costs for the broker–dealer can be

estricted to belong to some polyhedron P , allowing P = R 

| B | 
+ . This

an be easily included in the above formulation with the following

onstraint: 

p ∈ P . (4) 

We observe that, if x is known, and constraint (4) is not in-

luded, the above problem is easy to solve (see Proposition 3 ):
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the broker–dealer will set transaction costs to the maximum ones

among those available for each security. Nevertheless, if the port-

folio is unknown (to be decided by the investor) or additional

constraints, such as regulation constraints, are imposed into the

model, the problem becomes more difficult to be solved, since

there exists no explicit expression for an optimal solution. 

Moreover, we suppose that the investor wants to reduce the

risk of his investment while ensuring a given expected return. At

this point, several risk measures could be considered, among them

variance of returns, Mean Absolute Deviation (MAD), Conditional

Value at Risk (CVaR), Gini’s Mean Difference, etcetera. (Here, we

refer the reader to Mansini, Ogryczak, and Speranza (2003) for fur-

ther details on the topic.) In this paper, we have focused on a

portfolio optimization problem based on the CVaR risk measure.

This risk measure aims to avoid large losses: for a specific prob-

ability level α, the CVaR measures the conditional expectation of

the smallest returns with a cumulative probability α, that is, the

average return of the given size (quantile) of worst realizations

( Mansini et al., 2003; Puerto, Rodríguez-Chía, & Tamir, 2017; Rock-

afellar & Uryasev, 20 0 0; Ogryczak & Sliwinski, 2010 ). Therefore, we

assume that the investor’s goals are to maximize its CVaR and, at

the same time, to ensure that a minimum expected reward μ0 is

obtained with his portfolio. 

There exist in the literature different ways of accounting for

the transaction costs into the portfolio model ( Mansini, Ogryczak,

& Speranza, 2015a; 2015b ). For instance, including them in the

objective function ( Angelelli, Mansini, & Speranza, 2012; Olivares-

Nadal & DeMiguel, 2018; Woodside-Oriakhi et al., 2013 ), subtract-

ing them from the expected return ( Krejic, Kumaresan, & Roznjik,

2011; Mansini & Speranza, 2005 ), reducing the capital available for

the investment ( Woodside-Oriakhi et al., 2013 ), etcetera. We as-

sume in our approach that transaction costs are directly removed

from the expected return. 

In order to model the above situation, we consider that the rate

of return of each security j ∈ N is represented by a random variable

R j with a given mean μ j = E(R j ) . Each portfolio x defines a random

variable R x = 

∑ n 
j=1 R j x j that represents the portfolio rate of return

(its expected value can be computed as μ(x ) = 

∑ n 
j=1 μ j x j ). We

consider T scenarios, each of them with probability π t , t = 1 , . . . , T ,

and assume that for each random variable R j its realization, r jt , un-

der the scenario t is known. Thus, once the broker–dealer has set

the transaction costs, p , the realization of the portfolio rate of re-

turn R x under scenario t is given as y t = 

∑ n 
j=1 r jt x j −

∑ 

i ∈ B p i x i . 
With this information, we assume that the investor wants to

maximize the CVaR α , namely the conditional expectation of the

smallest returns with cumulative probability α, while ensuring

a minimum expected return μ0 . Thus, the portfolio optimization

problem that the investor wants to solve can be formulated as: 

max η − 1 

α

T ∑ 

t=1 

πt d t (CVaRP )

s.t. y t = 

n ∑ 

j=1 

r jt x j −
∑ 

i ∈ B 
p i x i , t = 1 , . . . , T , (5)

T ∑ 

t=1 

πt y t ≥ μ0 , (6)

d t ≥ η − y t , t = 1 , . . . , T , (7)

d t ≥ 0 , t = 1 , . . . , T , (8)

n ∑ 

j=1 

x j ≤ 1 , (9)
x j ≥ 0 , j = 1 , . . . , n, (10)

Observe that η is a continuous variable that models the α Value

t Risk , VaR α , namely the value of the minimum threshold for

hich the probability of the scenarios with a return less than or

qual to η is at least α. 

Next, (5) and (6) are the scenario constraints. Constraint

5) gives the expected return in each scenario. Note that, the

xpected return in each scenario is for the net rate of returns,
 n 
j=1 r jt x j , minus the transaction rates �i ∈ B p i x i . Whereas con-

traint (6) ensures an expected return of, at least, μ0 . The objective

unction and the set of constraints (7) and (8) model the CVaR (see

ansini et al. (2003) for details). And finally, the sets of constraints

9) and (10) force x to define a portfolio. 

We note also that by choosing different values for the param-

ters α and μ0 , in the formulation above, different types of in-

estors (i.e., different levels of attitude towards risk) can be incor-

orated in the model. 

. Bilevel broker-dealer-leader Investor-follower Portfolio 

roblem (BLIFP) 

We start analyzing a hierarchical structure in the financial mar-

ets in which the broker–dealer sets the transaction costs first,

nd after that, the investor chooses his portfolio. Observe that in

his situation, the problem faced from the investor point of view

educes to a portfolio selection, under the considered criterion,

hich in this case is to hedge against risk maximizing the average

-quantile of his smallest returns (CVaR α). Therefore, we study this

ituation from the point of view of both the financial intermediary

nd the investor, simultaneously, which is a novel perspective. 

We model the situation as a bilevel leader-follower problem in

hich the broker–dealer has to fix the transaction costs, from the

olyhedral set P ∈ R 

| B | , maximizing his benefits by assuming that,

fter his decision is made, the investor will choose his optimal

ortfolio. 

Using the bilevel optimization framework, the BLIFP can be

odeled as follows: 

ax 
∑ 

j∈ B 
p j x j (BLIFP0 )

s.t. (1) , (2) , (3) , (4) , (Bank Constraints)

x ∈ arg max η − 1 

α

T ∑ 

t=1 

πt d t , 

s.t. (5) , (6) , (7) , (8) , (9) , (10) (Investor Constraints)

Our goal is to solve the above bilevel programming model to

rovide answers to the new portfolio optimization problem. We

ropose two different MILP formulations with the aim of making a

omputational comparison to check which one is more effective. 

.1. Formulation BLIFP1 

The main difficulty in handling BLIFP0 is that some of its deci-

ion variables are constrained to be optimal solutions of a nested

ptimization problem. In order to overcome that issue we observe

hat the follower problem in BLIFP0 is linear on x when p is given.

his allows us to easily compute its exact dual as: 

in β + μ0 μ (Dual1 )

s.t. β −
T ∑ 

t=1 

(r jt − p j ) δt ≥ 0 , j ∈ B, (11)
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, 
β −
T ∑ 

t=1 

r jt δt ≥ 0 , j ∈ R, (12) 

−
T ∑ 

t=1 

γt = 1 , (13) 

γt ≥ −πt 

α
, t = 1 , . . . , T , (14) 

γt + δt + πt μ = 0 , t = 1 , . . . , T , (15) 

γt ≤ 0 , t = 1 , . . . , T , (16) 

μ ≤ 0 , β ≥ 0 . (17) 

We note in passing that variables δt , μ, γ t and β , are the dual

ariables associated to constraints (5), (6), (7) and (9) , respectively.

herefore, they can be interpreted as multipliers explaining the

arginal variation of the objective function values as a function of

he corresponding constraints’ right-hand-sides. Nevertheless, we

o not go into details in the economic insights of this dual model,

ince our use is instrumental to obtain a single level reformulation

f the hierarchical model. 

Then, BLIFP0 can be reformulated, applying the Strong Duality

heorem, including the constraints of the primal and dual problem

ogether with the equation that matches the objective values of

he follower primal and dual problems. Thus, BLIFP0 is equivalent

o solving this new mathematical programming model: 

ax 
∑ 

j∈ B 
p j x j 

s.t. (1) , (2) , (3) , (4) , (Bank Constraints

η − 1 

α

T ∑ 

t=1 

πt d t = β + μ0 μ, (18)

(5) , (6) , (7) , (8) , (9) , (10) , (Investor Constraints)

(11) , (12) , (13) , (14) , (15) , (16) , (17) (DualConstraints) .

We can observe that in the above formulation we have some bi-

inear terms, p j x j and p j δt that appear in the leader objective func-

ion and constraints (5) and (11) . In order to solve the problem

sing off-the-shelf solvers, they can be linearized ‘a la’ McKormick,

 McCormick, 1976 ), giving rise to another exact MILP formulation

or the bilevel problem. 

Indeed, since p j = 

∑ s j 
k =1 

c jk a jk , ∀ j ∈ B, we could substitute the

erms p j x j = 

∑ s j 
k =1 

c jk ̂  a jk adding variables ˆ a jk , ∀ j ∈ B, k = 1 , . . . , s j ,

nd the following set of constraints: 

ˆ 
 jk ≤ x j , j ∈ B, k = 1 , . . . , s j , 

ˆ 
 jk ≤ a jk , j ∈ B, k = 1 , . . . , s j , 

ˆ 
 jk ≥ x j − (1 − a jk ) , j ∈ B, k = 1 , . . . , s j , 

ˆ 
 jk ≥ 0 , j ∈ B, k = 1 , . . . , s j . 

(19) 

Furthermore, this linearization can be simplified. Observe that

t is sufficient to include in ( BLIFP0 ) variables ˆ a jk and constraints

ˆ 
 jk ≤ a jk , j ∈ B, k = 1 , . . . , s j , 

ˆ 
 jk ≥ 0 , j ∈ B, k = 1 , . . . , s j , 

(20) 

rom (19) and to substitute the variables x j = 

∑ s j 
k =1 

ˆ a jk , ∀ j ∈ B . We

btain in this manner an equivalent, smaller formulation with the
ilinear terms a jk x j linearized for all j ∈ B, k = 1 , . . . , s j , but with

ess constraints and decision variables. 

Following a similar argument we can linearize the products

p j δt = 

∑ s j 
k =1 

c jk a jk δt . To do that, take M a sufficiently large posi-

ive number and define the new variables ˆ δ jkt = a jk δt , ∀ j ∈ B, k =
 , . . . , s j , t = 1 , . . . , T . This set of variables together with the follow-

ng family of constraints linearize all the bilinear terms: 

ˆ 
jkt ≤ δt , j ∈ B, k = 1 , . . . , s j , t = 1 , . . . , T , 

ˆ 
jkt ≤ Ma jk , j ∈ B, k = 1 , . . . , s j , t = 1 , . . . , T , 

ˆ 
jkt ≥ δt − (1 − a jk ) M, j ∈ B, k = 1 , . . . , s j , t = 1 , . . . , T , 

ˆ 
jkt ≥ 0 , j ∈ B, k = 1 , . . . , s j , t = 1 , . . . , T . 

(21) 

Combining the above elements, all together, we obtain a valid

ILP formulation for BLIFP : 

ax 
∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk (BLIFP1 ) 

s.t. 

s j ∑ 

k =1 

a jk = 1 , j ∈ B, (2) 

a jk ∈ { 0 , 1 } , j ∈ B, k = 1 , . . . , s j , (3)

η − 1 

α

T ∑ 

t=1 

πt d t = β + μ0 μ (18) 

y t = 

∑ 

j∈ B 
r jt 

( 

s j ∑ 

k =1 

ˆ a jk 

) 

+ 

∑ 

j∈ R 
r jt x j −

∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk , t = 1 , . . . , T 

(22) 

T ∑ 

t=1 

πt y t ≥ μ0 , (6) 

d t ≥ η − y t , t = 1 , . . . , T , (7) 

d t ≥ 0 , t = 1 , . . . , T , (8) 

∑ 

j∈ B 

s j ∑ 

k =1 

ˆ a jk + 

∑ 

j∈ R 
x j ≤ 1 , (23) 

x j ≥ 0 , j ∈ R, (10) 

ˆ a jk ≤ a jk , j ∈ B, k = 1 , . . . , s j , 

ˆ a jk ≥ 0 , j ∈ B, k = 1 , . . . , s j , 
(20) 

β −
T ∑ 

t=1 

( 

r jt δt −
s j ∑ 

k =1 

c jk ̂  δ jkt 

) 

≥ 0 , j ∈ B, (24) 

β −
T ∑ 

t=1 

r jt δt ≥ 0 , j ∈ R, (12) 

−
T ∑ 

t=1 

γt = 1 , (13) 

γt ≥ −πt 

α
, t = 1 , . . . , T , (14) 

γt + δt + πt μ = 0 , t = 1 , . . . , T , (15) 

γt ≤ 0 , t = 1 , . . . , T , (16) 

μ ≤ 0 , β ≥ 0 , (17) 
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ˆ δ jkt ≤ δt , j ∈ B, k = 1 , . . . , s j , t = 1 , . . . , T , 
ˆ δ jkt ≤ Ma jk , j ∈ B, k = 1 , . . . , s j , t = 1 , . . . , T , 
ˆ δ jkt ≥ δt − (1 − a jk ) M, j ∈ B, k = 1 , . . . , s j , t = 1 , . . . , T , 
ˆ δ jkt ≥ 0 , j ∈ B, k = 1 , . . . , s j , t = 1 , . . . , T . 

(21)

The above long formulation can be easily understood once the

different sets of constraints are grouped by meaningful blocks. We

observe that (2) –(4) are the constraints that define the feasible do-

main of the broker–dealer problem. Constraint (18) imposes the

strong duality condition among the primal and dual formulation of

the follower problem. Next, ( 18 ), (6), (7), (8) , ( 23 ), (10) and (20) are

the constraints that correctly define the linearized version of the

investor subproblem. Finally, the constraints that come from the

linearized version of the dual of the follower problem are ( 24 ),

(12), (13), (14), (15), (16), (17) and (21) . 

Using these blocks of constraints BLIFP1 can be written in the

following compact form. 

max 
∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk (BLIFP1 )

s.t. (2) , (3) , (4) , ( Linear broker − dealer Constraints )

(18) , ( Strong Duality Constraint )

(22) , (6) , (7) , (8) , (23) , (10) , (20) , 

(Linear investor Constraints 1)

(24) , (12) , (13) , (14) , (15) , (16) , 
(17) , (21) . 

Linear Dual Constraints

This valid formulation of BLIFP1 requires to set a valid value for

the big- M constraint. Setting an appropriate value is important to

improve the performance of the resulting MIP. In the following, we

prove the existence of a valid upper bound for such a value. 

Proposition 1. Let B (p) be the set of all full rank submatrices of

the matrix representing the constraints of problem Dual1 in stan-

dard form, where p is a fixed set of cost values, and let B 

S (p) be

the set of all matrices that result from B(p) replacing, one each time,

their columns by the RHS of that problem. Moreover, let 	(p) :=
min {| det(B ) | : B ∈ B(p) } and 	S (p) = max {| det(B ) | : B ∈ B 

S (p) } . 
Then UB δ := max p 	

S (p) / 	(p) is a valid upper bound for the

big-M constant in BLIFP1 . 

Proof. It is easy to observe that for each fixed set of costs p , M ≤
max t=1 , ... ,T δt . Therefore the proof reduces to bound the terms δt . 

From constraint (15) in formulation Dual1 we know that δt =
−γt − πt μ, ∀ t = 1 , . . . , T , which implies that δt ≥ 0 for all t =
1 , . . . , T , since μ≤ 0, and δt ≤ 0, and π t ≥ 0 for all t = 1 , . . . , T . 

We observe that β + μ0 μ is bounded for any μ0 and for any

set of costs p (recall that this o.f. gives a CVaR). If we denote by

r max = max j=1 , ... ,n,t=1 , ... ,T r jt , r min = min j=1 , ... ,n,t=1 , ... ,T r jt and c max =
max j=1 , ... ,n, k =1 , ... ,s j 

c jk , then r min − c max ≤ β + μ0 μ ≤ r max . This im-

plies that the solution of Dual1 is attained at an extreme point and

therefore no rays have to be considered. Next, the extreme points

of the feasible regions are solutions of systems of full dimensional

equations taken from the constraint matrix of Dual1 in standard

form. Therefore, applying Cramer’s rule we obtain that, at the ex-

treme points, the values of any variable δt for all t = 1 , . . . , T sat-

isfy: δt ≤	S ( p )/ 	( p ). Next, letting p vary on the finite set of possi-

ble costs we obtain that δt ≤ max p 	S (p) / 	(p) . �

This bound is only of theoretical interest and in our computa-

tional experiments, we have set it empirically to be more accurate.
.2. Formulation BLIFP2 

In this section, we derive an alternative formulation for BLIFP

ased on the representation of the costs as p j x j = 

∑ s j 
k =1 

c jk ̂  a jk in

he follower problem before its dual problem is obtained. This arti-

act produces an alternative single level model that we will analyze

n the following. 

Let us consider the CVaR problem in BLIFP0 , and let us linearize

he products of variables p i x i , as in the previous formulation. This

ay we obtain: 

ax η − 1 

α

T ∑ 

t=1 

πt d t 

s.t. y t = 

∑ 

j∈ B 
r jt 

( 

s j ∑ 

k =1 

ˆ a jk 

) 

+ 

∑ 

j∈ R 
r jt x j 

−
∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk , t = 1 , . . . , T , (22

T ∑ 

t=1 

πt y t ≥ μ0 , (6)

d t ≥ η − y t , t = 1 , . . . , T , (7

d t ≥ 0 , t = 1 , . . . , T , (8

∑ 

j∈ B 

s j ∑ 

k =1 

ˆ a jk + 

∑ 

j∈ R 
x j ≤ 1 , (23

x j ≥ 0 , j = 1 , . . . , n, (10

ˆ a jk ≤ a jk , j ∈ B, k = 1 , . . . , s j , 

ˆ a jk ≥ 0 , j ∈ B, k = 1 , . . . , s j . 
(20

Once again, to ease presentation, we write the above formula-

ion in the following compact format. 

ax η − 1 

α

T ∑ 

t=1 

πt d t 

.t. (22) , (6) , (7) , (8) , (23) , (10) , (20) . 

(Linear investor Constraints 1) 

Its dual problem is: 

in β + μ0 μ + 

∑ 

j∈ B 

s j ∑ 

k =1 

a jk σ jk ( Dual2 ) 

.t. (12) , (13) , (14) , (15) , (16) , (17) , 

β −
T ∑ 

t=1 

r jt δt + 

T ∑ 

t=1 

c jk δt + σ jk ≥ 0 , j ∈ B, k = 1 , . . . , s j , (25)

σ jk ≥ 0 , j ∈ B, k = 1 , . . . , s j . (26)

Therefore, we can replace in BLIFP0 the nested optimization

roblem on the CVaR including the group of constraints in (Lin-

ar investor Constraints 1) and (12) –(17), (25), (26) , that will be

eferred from now on as (Dual2 Constraints), together with the

trong duality condition given by 

− 1 

α

T ∑ 

t=1 

πt d t = β + μ0 μ + 

∑ 

j∈ B 

s j ∑ 

k =1 

a jk σ jk . 
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Table 1 

number of variables and constraints in models BLIFP1 and BLIFP2 . 

Binary Continuous Constraints 

BLIFP1 d R + 5 T + d + dT + 3 2 | B | + 6 T + 2 | R | + 2 d + 4 dT + 6 

BLIFP2 d R + 4 T + 3 d + 3 | B | + 5 T + | R | + 7 d + 5 
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 ) 
he combination of all these elements results in the following al-

ernative valid formulation for BLIFP0 . 

ax 
∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk 

s.t. (2) , (3) , (4) ( Broker − dealer Constraints

η − 1 

α

T ∑ 

t=1 

πt d t = β + μ0 μ + 

∑ 

j∈ B 

s j ∑ 

k =1 

a jk σ jk (27) 

(22) , (6) , (7) , (8) , (23) , (10) , (20) , 

(Linear investor Constraints 1) 

(12) , (13) , (14) , (15) , (16) , (17) , 

(25) , (26) . 
(Dual2 Constraints) 

The formulation above still contains bilinear terms, namely

 jk σ jk , in constraint (27) . Therefore, we linearize them as in

LIFP1 and we obtain another valid MILP formulation for BLIFP . 

ax 
∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk (BLIFP2 ) 

s.t. (2) , (3) , (4) (Linear broker − dealer Constraints) 

η − 1 

α

T ∑ 

t=1 

πt d t = β + μ0 μ + 

∑ 

j∈ B 

s j ∑ 

k =1 

ˆ σ jk , (28)

(22) , (6) , (7) , (8) , (23) , (10) , (20) , 

(Linear investor Constraints 1)

(12) , (13) , (14) , (15) , (16) , (17) , 

(25) , (26) . 
(Dual2 Constraints) 

ˆ σ jk ≤ σ jk , j ∈ B, k = 1 , . . . , s j , 

ˆ σ jk ≤ Ma jk , j ∈ B, k = 1 , . . . , s j , 

ˆ σ jk ≥ σ jk − M(1 − a jk ) , j ∈ B, k = 1 , . . . , s j 

ˆ σ jk ≥ 0 , j ∈ B, k = 1 , . . . , s j , 

(29) 

Again, this valid formulation for BLIFP2 requires to prove the

xistence of a valid upper bound for the big- M constant in ( 29 ). In

he following, we prove that a valid upper bound for such a value

oes exist. 

roposition 2. Let UB δ be the bound obtained in Proposition 1 and

B β = min p 	
S (p) / 	(p) . Then max { T (r max − c min ) UB δ − LB β , 0 } is a

alid upper bound for M in BLIFP2 . 

roof. It is easy to observe that M = max j∈ B,k =1 , ... ,s j 
{ σ jk } is a valid

pper bound. 

Since σ jk is being minimized (it is minimized in Dual2 ) and

t must satisfy constraints (25) and (26) , there always exists, ∀ j ∈
, k = 1 , . . . , s j , an optimal solution where these variables get the

alues: 

jk = 

{
0 , if β + 

∑ T 
t=1 (c jk − r jt ) δt ≥ 0 

−β + 

∑ T 
t=1 (r jt − c jk ) δt , otherwise . 

Because β ≥ 0 by definition, if β + 

∑ T 
t=1 (c jk − r jt ) δt is negative,

hen 

∑ T 
t=1 (c jk − r jt ) ≤ 0 and therefore 

∑ T 
t=1 (r jt − c jk ) ≥ 0 . 

Consequently the maximum value of this variable would be

ax { 0 , T (r max − c min ) UB δ − LB β} , where UB δ and LB β are found by

oing a similar discussion as in the Proposition 1 . �

A first comparison of the above two models, namely BLIFP1 and

LIFP2 , sheds some light on their problem solving difficulty. For
he sake of simplicity, we denote by d = 

∑ 

j∈ B | s j | the number of

ifferent admissible costs in the models. Table 1 shows the number

f binary and continuous variables and constraints in both models.

The smaller dimension of BLIFP2 explains what we observe

ater in the computational experience: BLIFP2 is solved more ef-

ciently than BLIFP1 (see Section 6 ). 

. Bilevel Investor-leader broker-dealer-follower Portfolio 

roblem (ILBFP) 

For the sake of completeness, in this section, we consider the

everse situation to the one that has been analyzed in Section 3 ,

.e., a hierarchical structure in the financial market where the in-

estor acts first and once his portfolio x is chosen the broker–

ealer sets transaction costs. Although one could claim that this

ituation may be atypical in actual financial markets, we want to

nalyze this case from a theoretical point of view. Moreover, we

ish to analyze its implications depending on different broker–

ealers and investors’ profiles. See Section 6 for a comparative

nalysis. This situation leads to a bilevel leader–follower model in

hich the investor (leader) has to optimize his utility (maximize

he CVaR ensuring a given expected reward, μ0 ) by assuming that

nce he has chosen the portfolio, the broker–dealer (follower) will

aximize his benefits setting the applicable transaction costs. 

We can formulate the problem as: 

ax η − 1 

α

T ∑ 

t=1 

πt d t (ILBFP0 ) 

s.t. (5) , (6) , (7) , (8) , (9) , (10) , (Investor Constraints) 

p ∈ arg max 
∑ 

j∈ B 
p j x j , (30) 

s.t. (1) , (2) , (3) , (4) (Broker − dealer Constraints) . 

We state in the following proposition that if no further polyhe-

ral constraints are imposed on possible costs, i.e., P = R 

| B | 
+ , fixing

he transaction costs to their maximum possible values is always

n optimal solution of the follower (broker–dealer) problem. 

roposition 3. Let PricP be the follower broker–dealer problem, not

ncluding constraint (4) , in the problem ILBFP0 . Let x be a given port-

olio and let p + 
j 

= max k =1 , ... ,s j 
c jk ∀ j ∈ B . Then p + 

j 
, ∀ j ∈ B, is an op-

imal solution of PricP . 

Using the previous result, the ILBFP0 can be simplified, in the

ases in which constraint (4) is not included since the nested op-

imization problem is replaced by the explicit form of an optimal

olution. This results in a valid linear programming formulation to

olve the problem. 

ax η − 1 

α

T ∑ 

t=1 

πt d t (ILBFP − LP ) 

s.t. (5) , (6) , (7) , (8) , (9) , (10) , ( Investor Constraints

y t = 

n ∑ 

j=1 

r jt x j −
( ∑ 

j∈ B 
p + 

j 
x j 

) 

, t = 1 , . . . , T . 
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Nevertheless, the above result can not be extended to the case

in which a more general polyhedron P defines the admissible set of

transaction costs, and a single level MILP formulation can neither

be obtained. To solve ILBFP , in this more general case, we propose

an ‘ad hoc’ algorithm. To justify its validity we need the following

theorem. 

Theorem 1. Let us define λ = 

∑ 

j∈ B p j x j , and let us denote by � the

set containing the feasible commissions and fees rates of the broker–

dealer problem in P , denoted by p int . The problem ILBFP0 is equiva-

lent to: 

max η − 1 

α

T ∑ 

t=1 

p t d t (ILBFP − Compact )

st. y t = 

∑ n 
j=1 r jt x j − ( λ) , t = 1 , . . . , T , ∑ T 

t=1 πt y t ≥ μ0 , 

d t ≥ η − y t , t = 1 , . . . , T , 

d t ≥ 0 , t = 1 , . . . , T , 
n ∑ 

j=1 

x j ≤ 1 , 

x j ≥ 0 , j = 1 , . . . , n, 

λ ≥ ∑ 

j∈ B p int, j x j , p int ∈ �. 

Proof. We prove first that, maximizing the objective func-

tion η − 1 

α

∑ T 
t=1 πt d t in ILBFP0 is equivalent to maximizing

η(1 − c x ) + 

1 
α

∑ 

t∈ T ′ 
∑ n 

j=1 πt r jt x j − c x λ, where c x = 

∑ 

t∈ T ′ 
πt 
α > 0

and T 

′ := { t = 1 , . . . , n : η − y t ≥ 0 } . Observe that the constraints

in ILBFP − Compact imply that d t = max { 0 , η − y t } and y t =∑ 

j∈ B r jt x j −
∑ 

j∈ B p j x j for all t = 1 , . . . , T . Therefore the objective

value in the problem satisfies the following rewriting: 

max η − 1 

α

T ∑ 

t=1 

πt d t = max η − 1 

α

T ∑ 

t=1 

πt max { 0 , η − y t } 

= max η − 1 

α

∑ 

t∈ T ′ 
πt (η − y t ) 

= max η(1 − c x ) + 

1 

α

∑ 

t∈ T ′ 
πt 

( ∑ 

j∈ B 
r jt x j −

∑ 

j∈ B 
p j x j 

) 

= max η(1 − c x ) + 

1 

α

∑ 

t∈ T ′ 
πt 

( ∑ 

j∈ B 
r jt x j 

) 

− c x λ. 

(31)

Let λ = 

∑ 

j∈ B p j x j . The expression (31) proves that the objective

function of ILBFP − Compact depends on λ with a negative coeffi-

cient. 

Secondly, we have that, for a given portfolio x , the optimal value

λ̄ of the follower problem is 

λ̄ = max 
∑ 

j∈ B 
p j x j 

s.t. (1) , (2) , (3) , (4) (Broker − dealer Constraints) ,

and it is equivalent to evaluate the objective function in all the

feasible points and to choose the largest one: 

λ̄ = max 
∑ 

j∈ B 
p int, j x j , p int ∈ �. 

Since c x ≥ 1, λ is positive, and λ is being minimized in (31) , the

follower problem in ILBFP0 , can be replaced by 

λ ≥
∑ 

j∈ B 
p int, j x j , p int ∈ �, 
nd the result follows. �

Observe that, if the set of points in � were explicitly known,

LBFP − Compact would be a MILP compact formulation with very

ikely an exponential number of constraints for the general case of

LBFP0 . However, the points in the set � are usually difficult to

numerate a priori. 

The idea of our algorithm is to start with an incomplete formu-

ation of ILBFP − Compact and reinforce it with a new inequality,

oming from a new point in �, after each new iteration of the al-

orithm. 

lgorithm 1: 

• Initialization Choose a feasible portfolio x 0 . Set CV aR 0 =
+ ∞ 

• Iteration τ = 1 , 2 , . . . 
• Solve the broker–dealer (follower) problem for x τ−1 . Let p τ

be an optimal solution. 
• Solve the incomplete formulation: 

max η − 1 

α

T ∑ 

t=1 

πt d t (32)

st. y t = 

∑ n 
j=1 r jt x j − ( λ) , t = 1 , . . . , T , ∑ T 

t=1 πt y t ≥ μ0 

d t ≥ η − y t , t = 1 , . . . , T , 

d t ≥ 0 , t = 1 , . . . , T , 
n ∑ 

j=1 

x j ≤ 1 , 

x j ≥ 0 , j = 1 , . . . , n, 

λ ≥ ∑ 

j∈ B p 
ν
j 
x j , ν = 1 , . . . , τ. 

Let χτ = (x τ , y τ , ητ , d τ ) , and let ( χτ , λτ ) be an optimal so-

lution and CVaR τ the optimal value. 
• If ( χτ , λτ ) is feasible in ILBFP - Incomplete 

τ
, (χτ−1 , p τ )

are optimal solutions of ILBFP0 , and CVaR τ the optimal

value. END. 
• If ( χτ , λτ ) is not feasible in ILBFP - Incomplete 

τ
, go to

iteration τ := τ + 1 . 

We prove in the following result the optimality of the solution

btained in Algorithm 1 and also its finiteness. 

heorem 2. Algorithm 1 finishes in a finite number of iterations with

n optimal solution of ILBFP0 . 

roof. We start guaranteeing the finiteness of the algorithm. On

he one hand, the number of feasible solutions of the broker–

ealer problem is finite, then the number of different cuts λ ≥
 

j∈ B p τj x j that can be added to the incomplete formulation is also

nite. On the other hand, if a repeated cut is added then, x τ−1 is

easible in ILBFP-Incomplete τ , since ILBFP-Incomplete τ is equal

o ILBFP-Incomplete τ−1 , and then the algorithm stops. Therefore

he algorithm finishes in a finite number of iterations. 

We continue now proving the optimality of the solution ob-

ained. Let us denote by CVaR ∗ the optimal value of ILBFP0 , that

y Theorem 1 is also the optimal value of ILBFP − Compact . 

First, assume that (χτ−1 , λτ−1 ) satisfies the stopping crite-

ion. Then, it is clear that (χτ−1 , λτ−1 ) is also feasible in ILBFP-

ncomplete τ and C V aR ν ≤ C V aR ν−1 for all ν = 1 , . . . , τ, by con-

truction. Hence, ( χτ , λτ ) is also optimal in ILBFP-Incomplete τ

nd C V aR τ−1 = C V aR τ . 

Second, we have that CVaR ∗ ≤ CVaR τ always holds, since the

olyhedron describing the feasible region of ILBFP − Compact is

ncluded in the one defining the feasible region in ILBFP-

ncomplete τ . 
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Finally, we have that if (χτ−1 , p τ ) is feasible in ILBFP0 , then

 V aR ∗ = C V aR τ and it is an optimal solution of ILBFP0 . Therefore,

t remains to prove that (χτ−1 , p τ ) is feasible in ILBFP0 . 

Clearly χτ−1 verifies constraints (7) –(10) , since they are all in-

luded in the incomplete formulation, and also, x τ−1 , p τ verify

onstraints p ∈ arg max 
∑ 

j∈ B p j x j , (1) –(4) , since 

p τ ∈ arg max 
∑ 

j∈ B 
p j x 

τ−1 
j 

s.t. (1) , (2) , (3) , (4) (Broker − dealer Constraints) . 

To complete the proof we need to check that constraint (5) is

lso satisfied. 

Since p τ ∈ arg max 
∑ 

j∈ B p j x 
τ−1 
j 

, then 

∑ 

j∈ B p τj x 
τ−1 
j 

≥
 

j∈ B p j x 
τ−1 
j 

for any cost p verifying (1) –(4) . Using the same

rguments that in Theorem 1 it follows that variable λ is being

inimized in ILBFP-Incomplete τ , thus λτ = 

∑ 

j∈ B p τj x 
τ−1 
j 

and then

onstraint (5) holds. �

. The Maximum Social Welfare Problem (MSWP) 

In some actual situations, the investor and the broker–dealer

ay have an incentive to work together to improve the social wel-

are of society. They can agree to cooperate and share risk and ben-

fits to improve, in this way, their solutions by designing a joint

trategy. 

We also analyze this problem for the sake of completeness and

o compare the performance of this situation where none of the

arties has a hierarchical position over the other one. We think

hat even if the actual implementation of the cooperative model

ay be difficult, in a competitive actual market, one may gain

ome insights into the problem through analysis. 

In the social welfare model, we assume that both, broker–dealer

nd investor, cooperate. Let 0 < ξ < 1 be the marginal rate of sub-

titution between the two objectives. That is, the rate at which one

f the parties can give up some units of one of the objective func-

ions in exchange for another unit of the other one while main-

aining the same overall value. Then, the cooperative version of

he problem can be written as a weighted sum of the two objec-

ive functions of each party in the feasible region delimited by the

onstraints of both problems: 

max ξ
∑ 

j∈ B 
p j x j + (1 − ξ ) 

( 

η − 1 

α

T ∑ 

t=1 

πt d t 

) 

s.t. (1) , (2) , (3) , (4) (Broker − dealer Constraints) ,

(5) , (6) , (7) , (8) , (9) , (10) (Investor Constraints) . 

The above problem can be modeled as a MILP by linearizing the

roducts of variables a jk x j , ∀ j ∈ B following the same scheme as in

ection 3 : 

ax ξ
∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk + (1 − ξ ) 

( 

η − 1 

α

T ∑ 

t=1 

πt d t 

) 

(MSWP0 ) 

.t. (2) , (3) , (4) ( Linear broker − dealer Constraints ) ,

(22) , (6) , (7) , (8) , (23) , (10) , (20) . 

(Linear investor Constraints 1) 

For simplicity, in the remaining, we consider an unweighted

aximum social welfare model where the two objective func-

ions 
∑ 

j∈ B 
∑ s j 

k =1 
c jk a jk (broker–dealer) and η − 1 

α

∑ T 
t=1 πt d t (in-

estor) are simply added. The following result proves that coop-

ration is always profitable for both parties in that the joint return

xceeds the sum of individual returns of each of them. 

q (y ) = min 

T ∑
t=1
roposition 4. An optimal solution of the unweighted maximum so-

ial welfare problem induces an objective value that is greater than

r equal to the sum of the optimal returns of the two parties in the

ame bilevel problem in any of the hierarchical problems. 

roof. Any feasible solution of BLIFP0 and ILBFP0 is feasible

n MSWP0 since all the constraints in this last problem ap-

ear in the two former formulations. Therefore, the feasible re-

ion of MSWP0 includes the feasible regions of both, BLIFP0 and

LBFP0 and the result follows. �

.1. Benders decomposition 

We can also obtain a Benders decomposition, ( Benders, 1962 ),

n order to state a Benders like algorithm to solve MSWP0 , and

ompare the performance of both proposed methods to solve the

roblem. 

Recall that the unweighted maximum welfare problem can be

ritten as: 

max 
∑ 

j∈ B 
p j x j + 

( 

η − 1 

α

T ∑ 

t=1 

πt d t 

) 

s.t. (1) , (2) , (3) , (4) (Broker − dealer Constraints)

(5) , (6) , (7) , (8) , (9) , (10) (Investor Constraints)

In order to apply Benders decomposition we reformulate

SWP0 as follows: 

ax 
∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk + q (y ) (MSWP1 ) 

.t. (2) , (3) , (4) (Linear broker − dealer Constraints) 

ˆ a jk ≤ a jk , j ∈ B, k = 1 , . . . , s j , 

ˆ a jk ≥ 0 , j ∈ B, k = 1 , . . . , s j , 
(20)

 t = 

∑ 

j∈ B 
r jt 

( 

s j ∑ 

k =1 

ˆ a jk 

) 

+ 

∑ 

j∈ R 
r jt x j −

∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk , t = 1 , . . . , T , 

(22) 

T ∑ 

t=1 

πt y t ≥ μ0 , (6) 

∑ 

j∈ B 

s j ∑ 

k =1 

ˆ a jk + 

∑ 

j∈ R 
x j ≤ 1 , (23)

x j ≥ 0 , j ∈ R, (10)

here 

 (y ) = max η − 1 

α

T ∑ 

t=1 

πt d t 

s.t.: d t − η ≥ −y t , t = 1 , . . . , T , 

d t ≥ 0 , t = 1 , . . . , T . 

Note that in q ( y ) we are essentially computing the CVaR for the

iven solution { y t : t = 1 , . . . , T } . 
Computing again its dual problem, the evaluation of q ( y ) can

lso be obtained as: 

y t ( PrimalP ) 

.t.: γt ≥ −πt 
, t = 1 , . . . , T , 
α
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T ∑ 

t=1 

γt = 1 , 

γt ≤ 0 . 

Observe that the above problem, which we define as the Primal

Problem, is a continuous knapsack problem with lower bounds,

therefore it is well known that it can be solved by inspection. It

suffices to sort non-increasingly the y t values and assigning, in that

order, to each variable γ t the minimum feasible amount. 

Note that in the above formulation the feasible region does not

depend on the variables in MSWP1 , so if we denote by � the set

of extreme point solutions of the feasible region of PrimalP , q ( y )

is equivalent to: 

q (y ) = max q 

s.t. q ≤
T ∑ 

t=1 

−γ τ
t y t , γ τ ∈ �. (32)

Therefore, the problem MSWP0 with discrete costs can be writ-

ten as: 

max 
∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk + q (MasterP )

s.t. (2) , (3) , (4) (Linear broker − dealer Constraints)

ˆ a jk ≤ a jk , j ∈ B, k = 1 , . . . , s j , 

ˆ a jk ≥ 0 , j ∈ B, k = 1 , . . . , s j , 
(20)

y t = 

∑ 

j∈ B 
r jt 

( 

s j ∑ 

k =1 

ˆ a jk 

) 

+ 

∑ 

j∈ R 
r jt x j −

∑ 

j∈ B 

s j ∑ 

k =1 

c jk ̂  a jk , t = 1 , . . . , T , 

(22)

∑ T 
t=1 πt y t ≥ μ0 , (6)

∑ 

j∈ B 

s j ∑ 

k =1 

ˆ a jk + 

∑ 

j∈ R 
x j ≤ 1 , (23)

x j ≥ 0 , j ∈ R, (10)

q ≤ ∑ T 
t=1 γ

τ y t , γ τ ∈ �. (32)

This analysis allows us to state a Benders algorithm as follows: 

Benders Algorithm: 

Initialization Choose a solution y 0 of the master prob-

lem, solve the primal problem PrimalP for the chosen y 0 . Let

γ 0 be an optimal solution for PrimalP under y 0 and q ( y 0 )

the corresponding optimal value. Take ϒ = { γ 0 } and go to

iteration τ = 1 . 

Iteration τ = 1 , 2 , . . . Solve the master problem MasterP re-

placing � with ϒ . Let y ∗ and q ∗ be optimal solutions of such

problem. 

If τ = 1 and q (y 0 ) = q ∗. END. 

If τ > 1 and q (y ∗) = q ∗. END. 

Otherwise, solve the primal problem PrimalP for y = y ∗. Let

γ ∗ be an optimal solution of such problem. Take γ τ = γ ∗,
τ
ϒ = ϒ ∪ { γ } , and go to iteration τ := τ + 1 . d  
. Computational study and empirical application 

This section is devoted to reporting some numerical experi-

ents conducted to: 1) compare the effectiveness of the methods

roposed to solve the different problems; 2) analyze the form of

he solutions within each model; and 3) compare the profiles of

he solutions, in terms of net values for the broker–dealer and ex-

ected return for the investor, across the three defined problems. 

The computational experiments were carried out on a personal

omputer with Intel(R) Core(TM) i7-2600 CPU, 3.40 gigahertz with

6.0 gigabytes RAM. The algorithms and formulations were imple-

ented and solved by using Xpress IVE 8.0. 

In order to conduct the computational study, we take histori-

al data from Dow Jones Industrial Average. We considered daily

eturns of the 30 assets during one year ( T = 251 scenarios), and

hese T historical periods are considered as equiprobable scenarios

 πt = 1 /T ). Furthermore, to perform a richer comparison, we con-

ider different types of instances for the broker–dealer sets of pos-

ible transaction costs and different risk profiles for the investor. 

We assume that the broker–dealer charges transaction costs in

 subset B of the securities. In the instances we generated we

ompare the following cardinals for the set B : | B | = 30 , 20 , 10 . In

ddition, each cost p j , j ∈ B was chosen from a discrete set P j =
 c j1 , . . . , c js j } of admissible values. These parameters s j were ran-

omly generated in the interval [0, K ] with K = 5 , 15 , 50 . 

The next table gathers the nine different types of instances (A

o I) considered in our computational study: 

Once the set B and the parameter s j were set for each type of

nstance (A–I), we generate the possible transaction costs c ij as fol-

ows: 

• randomly generated in the interval [0.0 01,0.0 03] ( cheaper costs)

in approximately 15% of the securities, 
• randomly generated in the interval [0.0 02,0.0 08] ( normal costs)

in approximately 70% of the securities, 
• randomly generated in the interval [0.006,0.010] ( more expen-

sive costs) in approximately 15% of the securities. 

For each type of instance defined in Table 2 , five different in-

tances are generated and the average values are reported in all

he tables and figures. 

Different investor profiles are also considered varying the val-

es of parameters μ0 and α. We assume three thresholds for the

xpected return μ0 = 0 . 0 , 0 . 05 , 0 . 1 . This way, we are modeling in-

estors willing not to lose anything, or to win at least, 5% or 10% of

heir invested amount. In addition, we consider five different CVaR

isk levels, α = 0 . 01 , 0 . 05 , 0 . 5 , 0 . 9 . Note that usually, the smaller

he α, the higher the risk-aversion. 

.1. Comparing solution methods 

This section compares the computational performance of the

ifferent methods proposed to solve each one of the problems. 

For the first problem, BLIFP , we proposed two different formu-

ations: BLIFP1 and BLIFP2 . We show in all our tables, the aver-

ge CPU time expressed in seconds (CPU) and the number of in-

tances (#) solved to optimality (out of 5) for each formulation,

ith a time limit of 3600 seconds. 

Table 3 is organized in three blocks of rows. Each block reports

esults for μ0 = 0 . 0 , 0 . 05 , 0 . 1 , respectively. Each row in the table

efers to a type of instance ( A, . . . , I). The columns are also orga-

ized in four blocks. Each block reports the results for a different

isk level ( α). 

It can be observed that BLIFP2 is always faster and it solves

 higher number of problems than BLIFP1 to optimality. As an-

icipated in Section 3.2 this behavior is explained by the smaller

imension of BLIFP2 in terms of variables and constraints. For
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Table 2 

Types of instances for the sets of possible 

costs depending on the values of | B | and K . 

K = 5 K = 15 K = 50 

| B | = 30 A B C 

| B | = 20 D E F 

| B | = 10 G H I 
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xample, when α = 0 . 5 and μ = 0 . 0 , BLIFP2 is able to solve all

he instances of types D and H in few seconds, while BLIFP1 is

ot able to solve any of these instances. Therefore, we conclude

hat formulation BLIFP2 is more effective than BLIFP1 for solving

LIFP . 

The second problem in our analysis is the one presented in

ection 4 , namely ILBFP . For this situation, we have proposed a

ingle level LP formulation ILBFP − LP and Algorithm 1 to solve the

roblem. We report the results concerning this model (when no

dditional constrains on transaction costs are imposed in the set

f costs) in Table 4 . It can be observed that the compact formula-

ion is faster than the algorithm: all the instances can be solved by

sing the LP formulation in less than 7 seconds, meanwhile, the

lgorithm needs more than 100 seconds to solve some of them.

owever, the Algorithm 1 is also able to solve all the instances,

nd, as discussed in Section 4 , it can also be used when more gen-

ral sets of costs are considered. 

Finally, for the social welfare problem, MSWP , we have also

roposed another single level formulation MSWP0 and a Benders’

ike algorithm. The primal problems in the Benders Algorithm were

olved by using the inspection method described in the previous

ection. We report the results concerning this model in Table 5

ith the same layout as Table 4 . It can be observed that again the

ompact formulation is much faster than the algorithm. In spite of

hat, the algorithm is also able to solve the considered instances. 
Table 3 

Comparison of the average CPU and number of instances (out of 5) 

α = 0 . 05 α = 0 . 1 

μ0 BLIFP1 BLIFP2 BLIFP1 BLIFP2 

CPU # CPU # CPU # CPU 

0 A 3600 0 181 5 3600 0 916 

B 3600 0 3600 0 3600 0 3600 

C 3600 0 3600 0 3600 0 3600 

D 3600 0 2 5 3204 1 17 

E 3600 0 890 4 3600 0 2024 

F 3600 0 2895 1 3600 0 3600 

G 841 5 1 5 375 5 1 

H 2282 2 2 5 3117 1 2 

I 2959 1 1444 3 3600 0 1562 

0.05 A 3600 0 28 5 3600 0 343 

B 3600 0 3600 0 3600 0 3600 

C 3600 0 3600 0 3600 0 3600 

D 3600 0 2 5 3204 1 3 

E 3600 0 110 5 3600 0 1923 

F 3600 0 2905 1 3600 0 3600 

G 841 5 1 5 375 5 1 

H 2282 2 1 5 3117 1 2 

I 2959 1 930 4 3600 0 1575 

0.1 A 3600 0 6 5 3600 0 23 

B 3600 0 616 5 3600 0 1326 

C 3600 0 3600 0 3600 0 3600 

D 3600 0 1 5 3204 1 2 

E 3600 0 24 5 3600 0 55 

F 3600 0 1277 4 3600 0 2227 

G 841 5 1 5 375 5 1 

H 2282 2 1 5 3117 1 1 

I 2959 1 1477 3 3600 0 736 
.2. Comparing solutions and risk profiles within problems 

This section analyzes the results provided by the two hierarchi-

al problems in terms of broker–dealer’s net profit and risk and

xpected return attained by the investor. 

Fig. 1 compares the CVaR values obtained for the different risk

rofiles for BLIFP . Each piecewise curve reports the CVaR values

or different α-levels and μ0 -levels and the nine market profiles

 A, . . . , I). We observe that the CVaR always increases with the

alue of α, since this implies assuming more risk. It can also be

een in these figures that, when the value of α increases, the CVaR

or the different values of μ0 becomes closer for each value of α.

his can be explained because when α = 1 , if the constraint that

he expected return must be greater or equal to 0 is satisfied, both

roblems become the same, then, the bigger the α the more sim-

lar the results for different values of μ0 . Furthermore, for a given

, the CVaR for smaller μ0 is higher because in these cases the

onstraint on the expected return enlarges the feasible region as

ompared with higher values of μ0 . 

Fig. 2 compares, with a similar organization as Fig. 1 ,

he broker–dealer net profit for different investor’s risk pro-

les. Analogously, Fig. 3 represents the expected return for the

nvestor. 

We observe in Fig. 2 that the results of the broker–dealer net

rofit are bigger, in trend, for profiles with smaller values of α,

hat is, for more risk-averse investments. In addition, we also show

n Fig. 3 that, in general, bigger expected returns are obtained for

igher values of α. The reason for this is that by increasing α one

s considering a wider range of values to compute the CVaR, and

hen the result is a value closer to the expected return (note that

hen α = 1 the expected return is equal to the CVaR). 

Finally, to conclude with the analysis of BLIFP , we remark

hat the smaller the cardinality of the set B the better the CVaR

nd expected returns for the investor, but the worse the broker–

ealer net profit. This is expected since we are reducing the num-
solved to optimality, for BLIFP1 and BLIFP2 . 

α = 0 . 5 α = 0 . 9 

BLIFP1 BLIFP2 BLIFP1 BLIFP2 

# CPU # CPU # CPU # CPU # 

4 3600 0 3291 1 3600 0 5 5 

0 3600 0 3600 0 3600 0 3079 1 

0 3600 0 3600 0 3600 0 3600 0 

5 3600 0 59 5 1603 3 2 5 

3 3600 0 3377 1 1882 3 3 5 

0 3600 0 3600 0 2984 1 76 5 

5 810 5 1 5 571 5 1 5 

5 3600 0 7 5 2178 2 1 5 

3 3600 0 939 4 1804 3 5 5 

5 3600 0 3291 1 3156 1 5 5 

0 3600 0 3600 0 3600 0 3079 1 

0 3600 0 3600 0 3600 0 3600 0 

5 3600 0 59 5 2217 2 2 5 

3 3600 0 3377 1 1793 3 3 5 

0 3600 0 3600 0 2930 1 76 5 

5 810 5 1 5 62 5 1 5 

5 3600 0 7 5 153 5 1 5 

3 3600 0 939 4 2439 2 5 5 

5 3600 0 3291 1 3156 1 5 5 

4 3600 0 3600 0 3600 0 3079 1 

0 3600 0 3600 0 3600 0 3600 0 

5 3600 0 59 5 2217 2 2 5 

5 3600 0 3377 1 1793 3 3 5 

2 3600 0 3600 0 2930 1 76 5 

5 810 5 1 5 62 5 1 5 

5 3600 0 7 5 153 5 1 5 

4 3600 0 939 4 2439 2 5 5 
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Table 4 

Comparison of the average CPU for ILBFP − LP and Algorithm 1. 

α = 0 . 05 α = 0 . 1 α = 0 . 5 α = 0 . 9 

μ0 LP Alg. 1 LP Alg. 1 LP Alg. 1 LP Alg. 1 

0.0 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29 

B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97 

C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49 

D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18 

E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80 

F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21 

G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45 

H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32 

I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73 

0.05 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29 

B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97 

C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49 

D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18 

E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80 

F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21 

G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45 

H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32 

I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73 

0.1 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29 

B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97 

C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49 

D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18 

E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80 

F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21 

G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45 

H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32 

I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73 

Table 5 

Comparison of the average CPU for MSWP0 and Benders Algorithm. 

α = 0 . 05 α = 0 . 1 α = 0 . 5 α = 0 . 9 

μ0 MSWP0 Ben. MSWP0 Ben. MSWP0 Ben. MSWP0 Ben. 

0 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29 

B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97 

C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49 

D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18 

E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80 

F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21 

G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45 

H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32 

I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73 

0.05 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29 

B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97 

C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49 

D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18 

E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80 

F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21 

G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45 

H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32 

I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73 

0.1 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29 

B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97 

C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49 

D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18 

E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80 

F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21 

G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45 

H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32 

I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73 
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ber of securities where the broker–dealer could charge transaction

costs. 

We proceed next to analyze the solutions of the second prob-

lem, namely ILBFP . We observe in Fig. 4 the same trend that in

the previous model: more risk-averse investments produce lower

CVaR for the investor (left-upper figure), and bigger profits for the

broker–dealer (right-upper figure), and decreasing the cardinality

of the set B results in a reduction of the broker–dealer profit. The
ehavior of expected return (lower figure) is similar to those ob-

erved in Fig. 3 for the corresponding BLIFP . 

To finish this section, we consider the MSWP model. In this

ase, we have also included in our analysis the comparison of the

bjective function of this problem, namely the broker–dealer net

rofit plus CVaR, for the different risk profiles with respect to μ0 

nd α, and type of market ( A, . . . , I). It can be seen in the upper-

ight frame of Fig. 5 , that the objective value increases with the
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Fig. 1. Values of the CVaR for BLIFP , for different α and μ0 levels. 

Fig. 2. Values of the broker–dealer profit for BLIFP , for different values α and μ0 levels. 
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alue of α. The same trend is observed for the CVaR and the ex-

ected return (left figures). However, regarding the broker–dealer

rofit we could not detect a clear pattern. 

The interested reader is referred to an extended version of this

aper, see ( Leal, Ponce, & Puerto, 2018 ), that includes all compar-

sons and graphical outputs gathered in our study. Furthermore,

ne can find there a discrete Pareto front of MSWP for different

alues of the parameter ξ . 

.3. Comparing solutions across problems 

This last section of the computational results is devoted to com-

aring the solutions provided for the three problems considered in

his paper, namely BLIFP , ILBFP and MSWP . The goal is to ana-
yze the solution across problems with respect to the goals of the

wo parties: broker–dealer net profit, CVaR levels and expected re-

urns. Due to page length limitations in the paper version, we have

ncluded in our figures only some comparisons for certain risk pro-

les. The interested reader is referred again to the extended ver-

ion of this paper ( Leal et al., 2018 ), where we report comparisons

or a broader range of risk profiles. 

Fig. 6 shows a comparison of the CVaR values attained in BLIFP

nd ILBFP for different risk profiles ( α = 0 . 1 and μ0 = 0 . 05 and

= 0 . 5 and μ0 = 0 . 1 , in the right and left figures, respectively).

e can observe in Fig. 6 that for each risk profile, the CVaR val-

es are always higher in BLIFP than in ILBFP . Analogously, Fig. 7

ompares the values of the broker–dealer profit for the two hi-

rarchical problems. It is also remarkable that BLIFP always re-
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Fig. 3. Values of the expected return for BLIFP , for different α and μ0 levels. 

Fig. 4. Values of the CVaR (left-above), broker–dealer profit (right-above) and expected return (below) for ILBFP , for different α and μ0 levels. 
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v  
sults in higher profit values for each risk profile and all types

of instances. In these comparisons, we do not include the val-

ues for the social welfare problem because they are not compa-

rable due to the existence of multiple solutions (with the same

value for the objective function but a very different balance be-

tween the distribution of the CVaR and the broker–dealer profit).

As we mentioned above, we emphasize that in all our exper-

iments, BLIFP always gives higher profit for the broker–dealer

and better CVaR for the investor than ILBFP . In this regard, it

seems beneficial for the two parties to accept that the investor

knows the transaction costs on the securities before setting his

portfolio. 
The last comparisons across models refer to the value of the

um of broker–dealer profit plus the CVaR of the investor, in

ig. 8 , and the expected return value, in Fig. 9 . These two fig-

res show the corresponding values attained by the three pro-

osed problems, BLIFP , ILBFP and MSWP , for the different in-

tances ( A, . . . , I) and two different risk profiles (see figures cap-

ions). As theoretically proved in Proposition 4 , we can observe in

ig. 8 that the value of the sum of the broker–dealer profit plus the

VaR of the investor is always greater for the social welfare model

 MSWP ) than for the other two hierarchical problems, namely

LIFP and ILBFP . Finally, we compare the obtained expected return

alues for the three problems. From Fig. 9 , we can not conclude
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Fig. 5. Values of the CVaR (upper-left), broker–dealer profit (upper-right), expected return (lower-left) and objective value (lower-right) for different α and μ0 levels in 

MSWP . 

Fig. 6. Values of the CVaR for BLIFP and ILBFP for α = 0 . 1 and μ0 = 0 . 05 (left) and for α = 0 . 5 and μ0 = 0 . 1 (right). 

Fig. 7. Values of the broker–dealer profit for BLIFP and ILBFP , for α = 0 . 1 and μ0 = 0 . 05 (left) and for α = 0 . 5 and μ0 = 0 . 1 (right). 
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h

ny dominating relationship among the problems with respect to

he expected return value and therefore, the numerical experi-

ents do not prescribe any preference relationship regarding the

xpected return. 

. Concluding remarks and extensions 

We have presented three single-period portfolio optimiza-

ion problems with transaction costs, considering two different
ecision-makers: the investor and the financial intermediary. In-

luding the financial intermediaries (broker–dealers) as decision-

akers leads to the incorporation of the transaction costs as deci-

ion variables in the portfolio selection problem. The action of both

ecision-makers was assumed to be hierarchical. We have consid-

red the situations where each of these decision-makers is leader

nd have analyzed them. This hierarchical structure has been mod-

led using bilevel optimization. In addition, a social welfare model

as also been studied. 
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Fig. 8. Values of the broker–dealer profit + CVaR for the three problems, for α = 0 . 1 and μ0 = 0 . 05 (left) and for α = 0 . 5 and μ0 = 0 . 1 (right). 

Fig. 9. Values of the expected return for the three problems, for α = 0 . 05 and μ0 = 0 . 0 , (left) and for α = 0 . 1 and μ0 = 0 . 05 (right). 
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In all cases, it has been assumed that the broker–dealer has to

choose the unit transaction costs, for each security, from a discrete

set of possible costs, maximizing its benefits, and that the investor

aims to minimize the risk (optimizing his CVaR), ensuring a given

expected return. Considering continuous sets of possible values for

the transaction costs could be an interesting future research line. 

In the considered models we assumed proportional transac-

tions cost; however, other transaction costs structures such as fixed

transaction costs or convex piecewise linear costs have been con-

sidered in the literature (for further details on transaction costs

structures we refer the reader to Mansini et al. (2015a) ). These

cost structures could be incorporated in our models by slightly

modifying the resolution methods and increasing the complexity

of problem-solving. For instance, in order to incorporate fixed fees

and commissions, we should include some binary variables deter-

mining whether the investor chooses a security or not, and then

accounting for its contribution to the transaction costs. The gen-

eral tools from MILP can be adapted to solve the problem with this

new structure of costs. This could be another interesting future re-

search line. 

In order to solve the three proposed problems, MILP and LP for-

mulations, as well as algorithms, have been proposed. By making

variations in the set of costs, and in the parameters to model the

CVaR and the expected return, α and μ0 , different broker–dealer

and investor profiles can be considered. 

In our analysis in Sections 3 and 4 , all the problems have

been presented, for simplicity, with only one follower. Neverthe-

less, they could be easily extended to more than one. In particu-

lar, in Section 3 , the problem has been studied from the broker–

dealer point of view, that is, the broker–dealer aims to maxi-

mize its benefit by assuming that once the costs for the secu-

rities are set, a single investor will choose his portfolio accord-

ing to the described goals. We remark that the same procedure

could be applied to several followers (investors). In fact, in that

problem, F different profiles of followers (risk-averse, risk-taker,

etc.) could be considered, and the broker–dealer’s goal would

be maximizing the overall benefit for any linear function of its
osts. This approach would allow the broker–dealer to improve the

ecision-making process in the cases where the same costs have

o be set for all the investors, but different investor’s profiles are

onsidered. 

A detailed computational study has been conducted using

ata from the Dow Jones Industrial Average. We have compared

he solution methods, the solutions and the risk profiles within

roblems, and the solutions across them. From our computa-

ional experience, we have observed that the broker-dealer-leader

nvestor-follower problem results in better solutions for both, the

roker–dealer and the investor, in comparison with the investor-

eader broker-dealer-follower problem. Furthermore, the social

elfare model problem, as theoretically proved, in higher aggre-

ated benefits. 
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