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ABSTRACT

This paper presents novel bilevel leader-follower portfolio selection problems in which the financial in-
termediary becomes a decision-maker. This financial intermediary decides on the unit transaction costs
for investing in some securities, maximizing its benefits, and the investor chooses his optimal portfolio,
minimizing risk and ensuring a given expected return. Hence, transaction costs become decision variables
in the portfolio problem, and two levels of decision-makers are incorporated: the financial intermediary
and the investor. These situations give rise to general Nonlinear Programming formulations in both levels
of the decision process. We present different bilevel versions of the problem: financial intermediary-
leader, investor-leader, and social welfare; besides, their properties are analyzed. Moreover, we develop
Mixed Integer Linear Programming formulations for some of the proposed problems and effective algo-
rithms for some others. Finally, we report on some computational experiments performed on data taken
from the Dow Jones Industrial Average, and analyze and compare the results obtained by the different

models.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The classical model in portfolio optimization was originally pro-
posed by Markowitz (1952). This model has served as the ini-
tial point for the development of modern portfolio theory. Over
time, portfolio optimization problems have become more realis-
tic, incorporating real-life aspects that make the resulting portfo-
lios more cost-effective than the alternatives that do not consider
them (Castro, Gago, Hartillo, Puerto, & Ucha, 2011; Kolm, Tiitiincii,
& Fabozzi, 2014; Lynch & Tan, 2011; Mansini, Ogryczak, & Speranza,
2014; 2015b). Transaction costs can be seen as one of these impor-
tant actual features to be included in portfolio optimization. These
costs are those incurred by the investors when buying and selling
assets on financial markets, charged by the brokers, the financial
institutions or the market makers playing the role of intermedi-
ary. Transaction costs usually include banks and brokers’ commis-
sions, fees, etc. These commissions or fees have a direct impact on
the portfolio, especially for individual or small investors, since they
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will determine the net returns, reducing them and decreasing also
the budget available for future investments (Baule, 2010; Baumann
& Trautmann, 2013; Liu & Loewenstein, 2002).

To the best of our knowledge, in the existing literature, transac-
tion costs are assumed to be given (Davis & Norman, 1990; Korn,
1998; Lobo, Fazel, & Boyd, 2007; Magill & Constantinides, 1976;
Mansini et al., 2014; 2015b; Morton & Pliska, 1995). They can be
a fixed cost applied to each selected security in the portfolio;
or a variable cost to be paid which depends on the amount in-
vested in each security included in the portfolio (see e.g. (A. Valle,
Meade, & E. Beasley, 2014; Baule, 2010; Baumann & Trautmann,
2013; Kellerer, Mansini, & Speranza, 2000; Mansini et al., 2014;
2015b; Woodside-Oriakhi, Lucas, & Beasley, 2013) and the refer-
ences therein). This dependence can be proportional to the invest-
ment or given by a fixed cost that is only charged if the amount
invested exceeds a given threshold, or by some other functional
form (see e.g. Baule, 2010; Konno, Akishino, & Yamamoto, 2005;
Mansini et al., 2014; Mansini, Ogryczak, & Speranza, 2015b; Thi,
Moeini, & Dinh, 2009 and the references therein). But in any case,
unit transaction costs are known and predetermined in the opti-
mization process. Nevertheless, it is meaningful to analyze the sit-
uations where transaction costs can be decision variables set by
financial institutions so that they are trying to maximize its profit
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as part of the decision process that leads to optimal portfolios for
the investors.

The portfolio optimization problem considered in this paper is
based on a single-period model of investment and incorporates
a transaction costs setting phase. We assume that there are two
decision-makers involved in the situation: on the one hand, the in-
vestor and on the other hand, the broker specialist, market maker
or financial institution (that we will call from now on, for simplic-
ity broker-dealer). At the beginning of a period, an investor allo-
cates his capital among various assets and during the investment
period, each asset generates a random rate of return. Moreover,
we consider that the broker-dealer can charge some unit transac-
tion costs on the securities selected by the investor trying to max-
imize its benefits but anticipating the rational response of the in-
vestor. This is a pricing phase in which the broker-dealer decides
on how much is going to charge to the investor for the traded se-
curities. Considering unit transaction costs as a decision variable of
the model is a novel element in portfolio optimization and this is
one of the main contributions of this paper. Then, at the end of
the period, the result for the investor is a variation of his capital
(increased or decreased) which is measured by the weighted av-
erage of the individual rates of return minus commissions or fees.
In addition, the result for the broker-dealer is the amount paid by
the investor, which depends on the revcosts set on the traded se-
curities included in the portfolio chosen by the investor.

Based on the structure of financial markets, we assume a hi-
erarchical relationship between the parties involved in the port-
folio problem, that is, we define a natural problem in which the
broker-dealer sets the unit transaction costs first, trying to antic-
ipate the rational response of the investor. This hierarchical anal-
ysis of the portfolio problem has not been addressed before and
it is another contribution of our paper. Once the costs are fixed,
the investor chooses his optimal portfolio. For the sake of com-
pleteness, we also analyze the case in which the investor chooses
his portfolio first, and after that, the broker-dealer sets the trans-
action costs. In order to model these hierarchical structures, we
use a bilevel optimization approach (see e.g. Bard, 2013; Colson,
Marcotte, & Savard, 2005; Labbé & Violin, 2016; Sinha, Pekka, &
Kalyanmoy, 2017). Furthermore, we consider a social welfare prob-
lem where both, broker-dealer and investor, cooperate to maxi-
mize their returns. We assume in the different problems that all
economic or financial information is common knowledge and that
all the decision-makers in the problem have access to it.

The contributions of this paper can be summarized as follows:
(1) it incorporates for the first time the above hierarchical ap-
proaches with two-levels of decision-makers on portfolio optimiza-
tion problems (the broker-dealer sets unit transaction costs try-
ing to maximize its benefits, whereas the investor minimizes risk
while ensuring a given expected return (Benati, 2003; 2014)); (2) it
introduces transaction costs as decision variables controlled by the
broker-dealer; and (3) it develops different bilevel programming
formulations to obtain optimal solutions for the considered prob-
lems. This paper introduces new models for the bilevel portfolio
optimization problem. As far as we know, bilevel models for the
portfolio selection that set unit transaction costs as decision vari-
ables of the problem have not been considered in the literature
before.

The rest of the paper is organized as follows. Section 2 states
the preliminaries and the notation used throughout the paper. In
Section 3, we present the problem in which the broker-dealer is
the leader and we develop two different Mixed Integer Linear Pro-
gramming (MILP) formulations to solve such problem. Section 4 in-
troduces the investor-leader problem and develops a Linear Pro-
gramming (LP) formulation for it. In the more general case where
additional constraints are required on the portfolio selection, it is
presented a convergent iterative algorithm based on an “ad hoc”

decomposition of the model. Next, in Section 5, it is addressed
a social welfare problem. There, we propose a MILP formulation
and an algorithm based on Benders decomposition for solving it.
Section 6 is devoted to reporting on the computational study of
the different problems and solution methods discussed in the pre-
vious sections. Our results are based on data taken from Dow Jones
Industrial Average. Finally, Section 7 concludes the paper.

2. Preliminaries

Let N ={1,...,n} be the set of securities considered for an in-
vestment, B € N a subset of securities in which the broker-dealer
can charge unit transaction costs to the investor and R := N\ {B}.
In most cases, B = N, but there is no loss of generality to consider
that B is a proper subset of N.

First, we assume that the broker-dealer can price security jeB
from a discrete set, with cardinality s;, of admissible costs, P; =
{ci. ... cjsj}, and the broker-dealer’s goal is to maximize its ben-
efit. Further, we consider proportional transaction costs: the cost
charged by the broker-dealer per security is proportional to the
amount invested in such security. Hence, the broker-dealer’s deci-
sion variables are unit transaction costs (commissions, fees, ...) to
be charged (proportionally) to the securities.

Let x = (xj)j_1, n denote a vector of decision variables: x; be-
ing the weight of security j in the portfolio. We only assume that
the invested capital can not exceed the available budget and non-
negativity, i.e.,

n
X1y x<1, x>0, forj=1,..n
=1

This budget constraint is the minimum requirement on the struc-
ture of the portfolios. Nevertheless and without loss of generality,
we could have assumed that some other linear constraints are im-
posed on the structure of the requested portfolio x. All the results
in this paper can be easily extended to more general situations
that consider polyhedral sets of constraints defining the admissi-
ble set of portfolios.

Let us denote by p; the unit transaction cost chosen by the
broker-dealer to charge security j, j € B. Then, for a given portfolio
x (fixed), the problem faced by the broker-dealer can be modeled
using the following set of binary decision variables: aj, =1 if cost
Cik is assigned to Dj» this is, if pj=Cjs Aj = 0 otherwise. Thus, to
maximize his profit the broker-dealer solves the following prob-
lem:

max » " px; (PricP)
jeB
Sj
st pj= chkajk, j€B, (1)
k=1
Si
ap=1, jeB, (2)
k=1
ajke{O,l}, jGB,kZ],...,Sj. (3)

If no further constraints are imposed on costs the above is a
valid formulation. However, in general, we will assume without
loss of generality that the set of costs for the broker-dealer can be
restricted to belong to some polyhedron P, allowing P = lel. This
can be easily included in the above formulation with the following
constraint:

peP. (4)

We observe that, if x is known, and constraint (4) is not in-
cluded, the above problem is easy to solve (see Proposition 3):
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the broker-dealer will set transaction costs to the maximum ones
among those available for each security. Nevertheless, if the port-
folio is unknown (to be decided by the investor) or additional
constraints, such as regulation constraints, are imposed into the
model, the problem becomes more difficult to be solved, since
there exists no explicit expression for an optimal solution.

Moreover, we suppose that the investor wants to reduce the
risk of his investment while ensuring a given expected return. At
this point, several risk measures could be considered, among them
variance of returns, Mean Absolute Deviation (MAD), Conditional
Value at Risk (CVaR), Gini's Mean Difference, etcetera. (Here, we
refer the reader to Mansini, Ogryczak, and Speranza (2003) for fur-
ther details on the topic.) In this paper, we have focused on a
portfolio optimization problem based on the CVaR risk measure.
This risk measure aims to avoid large losses: for a specific prob-
ability level «, the CVaR measures the conditional expectation of
the smallest returns with a cumulative probability «, that is, the
average return of the given size (quantile) of worst realizations
(Mansini et al., 2003; Puerto, Rodriguez-Chia, & Tamir, 2017; Rock-
afellar & Uryasev, 2000; Ogryczak & Sliwinski, 2010). Therefore, we
assume that the investor’s goals are to maximize its CVaR and, at
the same time, to ensure that a minimum expected reward g is
obtained with his portfolio.

There exist in the literature different ways of accounting for
the transaction costs into the portfolio model (Mansini, Ogryczak,
& Speranza, 2015a; 2015b). For instance, including them in the
objective function (Angelelli, Mansini, & Speranza, 2012; Olivares-
Nadal & DeMiguel, 2018; Woodside-Oriakhi et al., 2013), subtract-
ing them from the expected return (Krejic, Kumaresan, & Roznjik,
2011; Mansini & Speranza, 2005), reducing the capital available for
the investment (Woodside-Oriakhi et al., 2013), etcetera. We as-
sume in our approach that transaction costs are directly removed
from the expected return.

In order to model the above situation, we consider that the rate
of return of each security je N is represented by a random variable
R; with a given mean u; = E(R;). Each portfolio x defines a random
variable Ry = Z}l:l Rjx; that represents the portfolio rate of return
(its expected value can be computed as w(x) = Z?:] njxj). We
consider T scenarios, each of them with probability ¢, t =1,..., T,
and assume that for each random variable R; its realization, rj;, un-
der the scenario t is known. Thus, once the broker-dealer has set
the transaction costs, p, the realization of the portfolio rate of re-
turn Ry under scenario t is given as y; = Z']L] TjtXj — D _icp DiXi-

With this information, we assume that the investor wants to
maximize the CVaRy, namely the conditional expectation of the
smallest returns with cumulative probability «, while ensuring
a minimum expected return (. Thus, the portfolio optimization
problem that the investor wants to solve can be formulated as:

17
max 1 — &Zmd[

(CVaRP)
=1
n
s.t.y[:er[xj—Zp,-xi, t=1,....T, (5)
= icB
T
D wye = o, (6)
=1
d[irl_}’tv t:1! '1T7 (7)
di >0, t=1,....T, (8)

x; >0, j=1,...,n, (10)

Observe that 7 is a continuous variable that models the o Value
at Risk, VaRy, namely the value of the minimum threshold for
which the probability of the scenarios with a return less than or
equal to n is at least «.

Next, (5) and (6) are the scenario constraints. Constraint
(5) gives the expected return in each scenario. Note that, the
expected return in each scenario is for the net rate of returns,
25;1 rjexj, minus the transaction rates X;.pp;x;. Whereas con-
straint (6) ensures an expected return of, at least, jto. The objective
function and the set of constraints (7) and (8) model the CVaR (see
Mansini et al. (2003) for details). And finally, the sets of constraints
(9) and (10) force x to define a portfolio.

We note also that by choosing different values for the param-
eters o and g, in the formulation above, different types of in-
vestors (i.e., different levels of attitude towards risk) can be incor-
porated in the model.

3. Bilevel broker-dealer-leader Investor-follower Portfolio
Problem (BLIFP)

We start analyzing a hierarchical structure in the financial mar-
kets in which the broker-dealer sets the transaction costs first,
and after that, the investor chooses his portfolio. Observe that in
this situation, the problem faced from the investor point of view
reduces to a portfolio selection, under the considered criterion,
which in this case is to hedge against risk maximizing the average
o-quantile of his smallest returns (CVaRy ). Therefore, we study this
situation from the point of view of both the financial intermediary
and the investor, simultaneously, which is a novel perspective.

We model the situation as a bilevel leader-follower problem in
which the broker-dealer has to fix the transaction costs, from the
polyhedral set P € Rl maximizing his benefits by assuming that,
after his decision is made, the investor will choose his optimal
portfolio.

Using the bilevel optimization framework, the BLIFP can be
modeled as follows:

max ) pjx; (BLIFPO)
jeB
s.t. (1), (2),(3), (4), (Bank Constraints)

T

1
X € argmax 1 — Z”fdf’
t=1

s.t. (5).(6).(7).(8).(9). (10)

Our goal is to solve the above bilevel programming model to
provide answers to the new portfolio optimization problem. We
propose two different MILP formulations with the aim of making a
computational comparison to check which one is more effective.

(Investor Constraints)

3.1. Formulation BLIFP1

The main difficulty in handling BLIFPO is that some of its deci-
sion variables are constrained to be optimal solutions of a nested
optimization problem. In order to overcome that issue we observe
that the follower problem in BLIFPO is linear on x when p is given.

This allows us to easily compute its exact dual as:
min 8 + o (Duall)

T
st. - (ri—pjd =0, jeB, (11)

t=1
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.
B - i =0, jeR, (12)
t=1
;
-> n=1, (13)
t=1
Tt
_ot =1,....T 14
yt = o ’ t ’ s 4y ( )
y[+8t+n[M:0, tzl, ,T, (15)
Y <0, t=1,...,T, (16)
n=<0,8=>0. (17)

We note in passing that variables §;, u, y: and B, are the dual
variables associated to constraints (5), (6), (7) and (9), respectively.
Therefore, they can be interpreted as multipliers explaining the
marginal variation of the objective function values as a function of
the corresponding constraints’ right-hand-sides. Nevertheless, we
do not go into details in the economic insights of this dual model,
since our use is instrumental to obtain a single level reformulation
of the hierarchical model.

Then, BLIFPO can be reformulated, applying the Strong Duality
Theorem, including the constraints of the primal and dual problem
together with the equation that matches the objective values of
the follower primal and dual problems. Thus, BLIFPO is equivalent
to solving this new mathematical programming model:

max » " pjx;
jeB

st. (1), (2), (3), (4),

(Bank Constraints)

1 7
n—aZmdFﬂﬂLom (18)
t=1

(5).(6). (7). (8). (9). (10),

(Investor Constraints)

(11), (12), (13), (14), (15), (16), (17)

We can observe that in the above formulation we have some bi-
linear terms, p;x; and p;§; that appear in the leader objective func-
tion and constraints (5) and (11). In order to solve the problem
using off-the-shelf solvers, they can be linearized ‘a 1a’ McKormick,
(McCormick, 1976), giving rise to another exact MILP formulation
for the bilevel problem.

Indeed, since p; = Zijﬂ Cik@jk. Vj € B, we could substitute the

(DualConstraints).

terms p;x; = Zi’;l Cjkdjx adding variables dj, VjeB k=1,...,s;,
and the following set of constraints:

ajr < x;, jeB k=15

dj < aj, jeBk=1,..s; (19)
Ajx>xj—(1—ap), jeBk=1,...5s;j

dj =0, jeBk=1,..5s;

Furthermore, this linearization can be simplified. Observe that
it is sufficient to include in (BLIFPO) variables dj, and constraints

jk = Aj,
dj =0,

jGB,kZ],...,Sj,

20
jGB,kZ],...,Sj, ( )

from (19) and to substitute the variables x; = Zij:] dj.VjeB. We
obtain in this manner an equivalent, smaller formulation with the

bilinear terms ayx; linearized for all je B, k=1,...,s;, but with
less constraints and decision variables.

Following a similar argument we can linearize the products
pjdt = Z;jﬂ Cjkajide. To do that, take M a sufficiently large posi-
tive number and define the new variables Sjkt =apd, VjeB k=
1,...,s;,t=1,...,T. This set of variables together with the follow-
ing family of constraints linearize all the bilinear terms:

djie < 6. jeBk=1...s;t=1,..T,
(?j,ngajk, jeBk=1,...s,t=1,....T, 1)
Spe =8 —(1—apM, jeBk=1,...s,t=1,...T,
Siwe = 0, jeBk=1,...s,t=1..T

Combining the above elements, all together, we obtain a valid
MILP formulation for BLIFP:

Si
max » > " cpdjk

(BLIFP1)
jeB k=1

Si
sty ap=1, jeB, )

k=1
ajke{O,l}, j€B,k=1,.,.,$j, (3)

1 T

n—&;ﬂtdt=ﬂ+ﬂoﬂ (18)

5i 5
y[:Zrﬁ<Z&jk)+ertxj—ZZCjkdjk, t=1,...,T,

jeB k=1 jeR jeB k=1
(22)
T

> ey = o. (6)
t=1
d[ZT]—yt, tzl, .,T, (7)
d: >0, t=1,...,T, 8)

Sj
DY dp+ Y x <1, (23)
jeB k=1 jer
X;j >0, jER, (10)
(?jkgajk, _]:eB,kzl,...,Sj, 20)
dy >0, jeBk=1,..5s;

T 5j .
,3 — Z rjtﬁt — chl<8jkt >0, ] €B, (24)

t=1 k=1

T
B-> rib =0, jeRr, (12)

t=1

T
Y n=1 (13)
t=1
T .

yt>—g, t=1,...,T, (14)
)/t+5t+m,u:0, t=1, ,T, (15)
1t <0, t=1,...,T, (16)
n=<08=>0, (17)
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Sjie < 8. jeBk=1,...s;,t=1,....T,
ajktSM(ij, jEB,k:1,...,Sj,t=],...,T,
8jke = 8 — (1 —ay)M, jeBk=1,...si,t=1,...T,
djke = 0, jeBk=1..s,t=1,...T.

(21)

The above long formulation can be easily understood once the
different sets of constraints are grouped by meaningful blocks. We
observe that (2)-(4) are the constraints that define the feasible do-
main of the broker-dealer problem. Constraint (18) imposes the
strong duality condition among the primal and dual formulation of
the follower problem. Next, (18), (6), (7), (8), (23), (10) and (20) are
the constraints that correctly define the linearized version of the
investor subproblem. Finally, the constraints that come from the
linearized version of the dual of the follower problem are (24),
(12), (13), (14), (15), (16), (17) and (21).

Using these blocks of constraints BLIFP1 can be written in the
following compact form.

5
max Z Z Cjkdjk

jeB k=1

st. (2),(3), (4),

(BLIFP1)

(Linear broker — dealer Constraints)

(18), (Strong Duality Constraint)

(22),(6),(7),(8).(23),(10),(20),
(Linear investor Constraints 1)

(24). (12), (13), (14). (15). (16),

7). 21). Linear Dual Constraints

This valid formulation of BLIFP1 requires to set a valid value for
the big-M constraint. Setting an appropriate value is important to
improve the performance of the resulting MIP. In the following, we
prove the existence of a valid upper bound for such a value.

Proposition 1. Let B(p) be the set of all full rank submatrices of
the matrix representing the constraints of problem Duall in stan-
dard form, where p is a fixed set of cost values, and let BS(p) be
the set of all matrices that result from B(p) replacing, one each time,
their columns by the RHS of that problem. Moreover, let A(p) :=
min{|det(B)| : B < B(p)} and AS(p) = max{|det(B)| : B e B5(p)}.

Then UBjs := max, AS(p)/A(p) is a valid upper bound for the
big-M constant in BLIFP1.

Proof. It is easy to observe that for each fixed set of costs p, M <
max,_1._t 6. Therefore the proof reduces to bound the terms §;.
From constraint (15) in formulation Duall we know that §; =
—Yt —mep, Vt=1,...,T, which implies that ;>0 for all t =
1,..., T, since 4 <0, and §; <0, and w,>0 forallt=1,..., T.
We observe that 8 + uou is bounded for any pg and for any
set of costs p (recall that this o.f. gives a CVaR). If we denote by

MaXj_q__n, k=1,...s; Cjko theN Tmin — Cmax < B + fojt < Tmax. This im-
plies that the solution of Duall is attained at an extreme point and
therefore no rays have to be considered. Next, the extreme points
of the feasible regions are solutions of systems of full dimensional
equations taken from the constraint matrix of Duall in standard
form. Therefore, applying Cramer’s rule we obtain that, at the ex-
treme points, the values of any variable §; for all t =1, ..., T sat-
isfy: 8; < AS(p)/A(p). Next, letting p vary on the finite set of possi-
ble costs we obtain that & < max, AS(p)/A(p). O

This bound is only of theoretical interest and in our computa-
tional experiments, we have set it empirically to be more accurate.

3.2. Formulation BLIFP2

In this section, we derive an alternative formulation for BLIFP
based on the representation of the costs as pjx; = chj=1 Cikdjx in
the follower problem before its dual problem is obtained. This arti-
fact produces an alternative single level model that we will analyze
in the following.

Let us consider the CVaR problem in BLIFPO, and let us linearize
the products of variables p;x;, as in the previous formulation. This
way we obtain:

1T
max - — andt
=1

Si
Stye =) rj (Z ajk) + D TieXj
k=1

jeB jer

Sj
- Z Z Cjkajlw

t=1,...,T, (22)
jeB k=1
T
Znt}’tZ/Lov (6)
t=1
dtzn*yt, t=1,...,T, (7)
di >0, t=1,....T, (8)

Yodd+y K=l (23)

jeB k=1 jeR

Xj >0, ji=1....n (10)
‘?jk =< Qj, J:EB, k=1,....s;, 20)
ay =0, jeBk=1,..s;.

Once again, to ease presentation, we write the above formula-
tion in the following compact format.

17
max 7 — &Zmdt

t=1
s.t. (22), (6), (7). (8). (23), (10), (20).

(Linear investor Constraints 1)

Its dual problem is:

Sj
min B+ flopt + Y Y a0 (Dual2)
JeB k=1

s.t. (12), (13), (14), (15), (16), (17),

T T
ﬁ—Zrﬁ(S[—i—chk&—l-ajkzO, jEB,kZ],...,Sj, (25)
t=1 t=1

jeB k=15, (26)

Therefore, we can replace in BLIFPO the nested optimization
problem on the CVaR including the group of constraints in (Lin-
ear investor Constraints 1) and (12)-(17), (25), (26), that will be
referred from now on as (Dual2 Constraints), together with the
strong duality condition given by

1o J
n-4 Y mde =B+ ok + ) Y ATk
t=1

jeB k=1

Ojx =0,
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The combination of all these elements results in the following al-
ternative valid formulation for BLIFPO.

5
max Z Z cjkdjk

jeB k=1

st. (2),3),4)

(Broker — dealer Constraints)

T Si
77_ézﬂtdt:ﬁ‘i'/"oﬂ'i‘zzajkajk (27)

t=1 jeB k=1
(22),(6).(7),(8).(23).(10),(20),

(Linear investor Constraints 1)

(12), (13), (14), (15), (16), (17),
(25), (26).
The formulation above still contains bilinear terms, namely

4O jk, in constraint (27). Therefore, we linearize them as in
BLIFP1 and we obtain another valid MILP formulation for BLIFP.

Si
max Z Z Cﬂﬁjk

jeB k=1

s.t. (2),(3),(4)

(Dual2 Constraints)

(BLIFP2)

(Linear broker — dealer Constraints)

1< I
n—&Zﬂtd[=ﬁ+M0M+ZZO_jka (28)
t=1

jeB k=1

(22),(6).(7).(8).(23).(10),(20),
(Linear investor Constraints 1)

(12), (13), (14), (13). (16). (A7), (Dual2 Constraints)

(25), (26).
6jk50jk’ jGB,k=1,...,5j,
OA'ijMﬂjkv jEB,k:l,...,Sj,

6jk20jk_M(]_ajlc)’ jerk:l""’sf

6 >0, jeBk=1,..s

Again, this valid formulation for BLIFP2 requires to prove the
existence of a valid upper bound for the big-M constant in (29). In
the following, we prove that a valid upper bound for such a value
does exist.

Proposition 2. Let UBs be the bound obtained in Proposition 1 and
LBg = miny AS(p)/A(p). Then max{T ('max — Cmin)UBs — LBg,0}isa
valid upper bound for M in BLIFP2.

upper bound.

Since o is being minimized (it is minimized in Dual2) and
it must satisfy constraints (25) and (26), there always exists, Vj €
B k=1,..., sj, an optimal solution where these variables get the
values:

if B+ ZtT=1 (Cj—1je)éc =0
otherwise.

0,
O, =
jk
{—,3 + 1 (Tje = Cir)de
Because 8 >0 by definition, if 8 + ZL1 (Cji — Tjt)d¢ is negative,
then ZL] (cjk —1jt) <0 and therefore ZtT=1 (rje — ¢ji) = 0.
Consequently the maximum value of this variable would be

max{0, T (fmax — Cpin)UBs — LBg}, where UBs and LBy are found by
doing a similar discussion as in the Proposition 1. O

A first comparison of the above two models, namely BLIFP1 and
BLIFP2, sheds some light on their problem solving difficulty. For

Table 1
number of variables and constraints in models BLIFP1 and BLIFP2.

Binary  Continuous Constraints
BLIFP1 d R+5T+d+dT+3  2|B|+6T+2|R|+2d +4dT +6
BLIFP2 d R+4T +3d+3 |B] + 5T + |R| +7d + 5

the sake of simplicity, we denote by d =} sj| the number of
different admissible costs in the models. Table 1 shows the number
of binary and continuous variables and constraints in both models.

The smaller dimension of BLIFP2 explains what we observe
later in the computational experience: BLIFP2 is solved more ef-
ficiently than BLIFP1 (see Section 6).

4. Bilevel Investor-leader broker-dealer-follower Portfolio
Problem (ILBFP)

For the sake of completeness, in this section, we consider the
reverse situation to the one that has been analyzed in Section 3,
i.e,, a hierarchical structure in the financial market where the in-
vestor acts first and once his portfolio x is chosen the broker-
dealer sets transaction costs. Although one could claim that this
situation may be atypical in actual financial markets, we want to
analyze this case from a theoretical point of view. Moreover, we
wish to analyze its implications depending on different broker-
dealers and investors’ profiles. See Section 6 for a comparative
analysis. This situation leads to a bilevel leader-follower model in
which the investor (leader) has to optimize his utility (maximize
the CVaR ensuring a given expected reward, () by assuming that
once he has chosen the portfolio, the broker-dealer (follower) will
maximize his benefits setting the applicable transaction costs.

We can formulate the problem as:

T
max 1n-— é > md, (ILBFPO)

t=1

s.t. (5).(6). (7). (8).(9). (10),

(Investor Constraints)

peargmax )y pjx;, (30)
jeB

st (1), 2), (3), (4)

We state in the following proposition that if no further polyhe-
dral constraints are imposed on possible costs, i.e., P = R'f', fixing
the transaction costs to their maximum possible values is always
an optimal solution of the follower (broker-dealer) problem.

(Broker — dealer Constraints).

Proposition 3. Let PricP be the follower broker-dealer problem, not
including constraint (4), in the problem ILBFPO. Let x be a given port-
folio and let p}’ =MaXe_q, s, Cjk Vj e B. Then p}f, Vj e B, is an op-
timal solution of PricP.

Using the previous result, the ILBFPO can be simplified, in the
cases in which constraint (4) is not included since the nested op-
timization problem is replaced by the explicit form of an optimal
solution. This results in a valid linear programming formulation to
solve the problem.

T
max n — é > medy (ILBFP — LP)

t=1
s.t. (5),(6),(7),(8),(9), (10),
Vo= Tik; - (ijxj), t=1,...,T.
j=1

(Investor Constraints)

jeB
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Nevertheless, the above result can not be extended to the case
in which a more general polyhedron P defines the admissible set of
transaction costs, and a single level MILP formulation can neither
be obtained. To solve ILBFP, in this more general case, we propose
an ‘ad hoc’ algorithm. To justify its validity we need the following
theorem.

Theorem 1. Let us define A = }"p p;x;, and let us denote by 2 the
set containing the feasible commissions and fees rates of the broker—
dealer problem in P, denoted by p;,.. The problem ILBFPO is equiva-
lent to:

1 T
max n - — chd[

t=1

(ILBFP — Compact)

st. Yo=Y i1 Tiexj — (A), t=1,...,T,
YLy Ty = o,
de =0 —Yr, t=1,...,T,
de >0, t=1,...,T,
n
dox=1,
=1
XjZO, j=1,...,n,
A =3 icp Dint, jXjs Dint € S2.

Proof. We prove first that, maximizing the objective func-
tion n—azle mede in ILBFPO is equivalent to maximizing

N1 =) + & Yper Xy TeljeXj — Cxh, where cx =Y o 5 >0
and T :={t=1,...,n:n—Yy: >0}. Observe that the constraints
in ILBFP — Compact imply that d; =max{0,n-y;} and y;=
Y jesTjtXj — > jeg Pjxj for all ¢ =1,...,T. Therefore the objective
value in the problem satisfies the following rewriting:

1 ¢ 1y
maxn — - Y md = maxn - p > memax{0, n — y:}
t=1 t=1

1
maxn — azﬂt(ﬂ—}’t)

teT’

1
=maxn(l —c) + 3 > (Zrﬂxj - ijxj)

teT’ jeB jeB

1
=maxn(1—c) + 5 Zm (Z rjtxj) — .

teT’ jeB
(31)

Let A = 3" ;5 pjx;. The expression (31) proves that the objective
function of ILBFP — Compact depends on A with a negative coeffi-
cient.

_ Secondly, we have that, for a given portfolio x, the optimal value
A of the follower problem is

5» = Mmax Z DjX;j
jeB
s.t. (1),(2),(3), (4)
and it is equivalent to evaluate the objective function in all the
feasible points and to choose the largest one:

A= maxzpint,jxj, Dint € £2.
jeB

(Broker — dealer Constraints),

Since cx>1, A is positive, and A is being minimized in (31), the
follower problem in ILBFPO, can be replaced by

A= DinejXj. Dine € Q2.

jeB

and the result follows. O

Observe that, if the set of points in 2 were explicitly known,
ILBFP — Compact would be a MILP compact formulation with very
likely an exponential number of constraints for the general case of
ILBFPO. However, the points in the set Q are usually difficult to
enumerate a priori.

The idea of our algorithm is to start with an incomplete formu-
lation of ILBFP — Compact and reinforce it with a new inequality,
coming from a new point in €2, after each new iteration of the al-
gorithm.

ALGORITHM 1:

e Initialization Choose a feasible portfolio x°. Set CVaR? =
+00
e Iterationt=1,2,...
« Solve the broker-dealer (follower) problem for x*~1. Let p®
be an optimal solution.
« Solve the incomplete formulation:

T
maxn — éZmdt (32)
=1
st. ye= Zl}zl TjeXj — A), t=1,...,T,
ZtT=1 TeYe = Ko
d[ZT]—y[, t:l,...,T,
d: >0, t=1,...,T,
n
> oxi<1,
=1
x; =0, j=1,...,n,
A =3 e DiX). v=1,...,1.

Let x¥ = (x7,y",n%,d"), and let (x 7, A7) be an optimal so-
lution and CVaR® the optimal value.

o If (x7, A7) is feasible in ILBFP-Incomplete®, (x7~', p7)
are optimal solutions of ILBFPO, and CVaR® the optimal
value. END.

e If (x7, A7) is not feasible in ILBFP-Incomplete®, go to
iteration 7 ;=7 + 1.

We prove in the following result the optimality of the solution
obtained in Algorithm 1 and also its finiteness.

Theorem 2. Algorithm 1 finishes in a finite number of iterations with
an optimal solution of ILBFPO.

Proof. We start guaranteeing the finiteness of the algorithm. On
the one hand, the number of feasible solutions of the broker—
dealer problem is finite, then the number of different cuts A >
Y jep P}X; that can be added to the incomplete formulation is also

finite. On the other hand, if a repeated cut is added then, x*~1 is
feasible in ILBFP-Incomplete®, since ILBFP-Incomplete® is equal
to ILBFP-Incomplete™ !, and then the algorithm stops. Therefore
the algorithm finishes in a finite number of iterations.

We continue now proving the optimality of the solution ob-
tained. Let us denote by CVaR* the optimal value of ILBFPO, that
by Theorem 1 is also the optimal value of ILBFP — Compact.

First, assume that (x®~!,AT-1) satisfies the stopping crite-
rion. Then, it is clear that (x7~',A7"1) is also feasible in ILBFP-
Incomplete’ and CVaR® <CVaR'-! for all v=1,..., T, by con-
struction. Hence, (x*, A%) is also optimal in ILBFP-Incomplete®
and CVaR™ ! = CVaR".

Second, we have that CVaR* <CVaR" always holds, since the
polyhedron describing the feasible region of ILBFP — Compact is
included in the one defining the feasible region in ILBFP-
Incomplete®.
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Finally, we have that if (x7~1, p?) is feasible in ILBFPO, then
CVaR* = CVaR® and it is an optimal solution of ILBFPO. Therefore,
it remains to prove that (7!, p?) is feasible in ILBFPO.

Clearly x~1 verifies constraints (7)-(10), since they are all in-
cluded in the incomplete formulation, and also, x*~1, pT verify
constraints p € argmax > jeB PiXj, (1)-(4), since

p" eargmaxy pix;~!
jeB

s.t. (1), (2). 3), (4)

To complete the proof we need to check that constraint (5) is
also satisfied.

Since  pT eargmaxYjppx; ', then  Yppixl ' =
ZleBp] -1 for any cost p verlfymg (1)-(4). Using the same
arguments that in Theorem 1 it follows that variable A is being
minimized in ILBFP-Incomplete”, thus A7 = 3" g p]f.x]f‘1 and then
constraint (5) holds. O

(Broker — dealer Constraints).

5. The Maximum Social Welfare Problem (MSWP)

In some actual situations, the investor and the broker—dealer
may have an incentive to work together to improve the social wel-
fare of society. They can agree to cooperate and share risk and ben-
efits to improve, in this way, their solutions by designing a joint
strategy.

We also analyze this problem for the sake of completeness and
to compare the performance of this situation where none of the
parties has a hierarchical position over the other one. We think
that even if the actual implementation of the cooperative model
may be difficult, in a competitive actual market, one may gain
some insights into the problem through analysis.

In the social welfare model, we assume that both, broker-dealer
and investor, cooperate. Let 0 <& <1 be the marginal rate of sub-
stitution between the two objectives. That is, the rate at which one
of the parties can give up some units of one of the objective func-
tions in exchange for another unit of the other one while main-
taining the same overall value. Then, the cooperative version of
the problem can be written as a weighted sum of the two objec-
tive functions of each party in the feasible region delimited by the
constraints of both problems:

T

max £ " pix;+ (1 —S)(n - ;Zﬂrdr)
jeB t=1

st. (1),(2),(3), (4)

(Broker — dealer Constraints),

(5).(6). (7). (8). (9). (10)

The above problem can be modeled as a MILP by linearizing the
products of variables ajx;, VjeB following the same scheme as in
Section 3:

max E chjkaﬂ( + (1 _$)<77 - Zntdt>

jeB k=1

(Investor Constraints).

(MSWPO0)

s.t. 2),(3), @) (Linear broker — dealer Constraints),
(22),(6).(7),(8),(23),(10),(20).

(Linear investor Constraints 1)

For simplicity, in the remaining, we consider an unweighted
maximum social welfare model where the two objective func-

tions ;g Z;{j] Cjkaji (broker-dealer) and nfl q edy, (i

= min
vestor) are simply added. The following result provesjthat co
eration is always profitable for both parties in that the joint return

exceeds the sum of individual returns of each of them.

=Yty

Proposition 4. An optimal solution of the unweighted maximum so-
cial welfare problem induces an objective value that is greater than
or equal to the sum of the optimal returns of the two parties in the
same bilevel problem in any of the hierarchical problems.

Proof. Any feasible solution of BLIFPO and ILBFPO is feasible
in MSWPO since all the constraints in this last problem ap-
pear in the two former formulations. Therefore, the feasible re-
gion of MSWPO includes the feasible regions of both, BLIFPO and
ILBFPO and the result follows. O

5.1. Benders decomposition

We can also obtain a Benders decomposition, (Benders, 1962),
in order to state a Benders like algorithm to solve MSWPO, and
compare the performance of both proposed methods to solve the
problem.

Recall that the unweighted maximum welfare problem can be
written as:

T
max Y pjx; + (n - ;Zmdr)
jeB t=1
st (1),(2),(3), (4)

(Broker — dealer Constraints),

(5).(6). (7). (8). (9). (10)

In order to apply Benders decomposition we reformulate
MSWPO as follows:

Sj
max ) Y cudi +90)

jeB k=1

(Investor Constraints).

(MSWP1)

st. (2),(3),(4)

(Linear broker — dealer Constraints)

jk = Aj,
dj >0,

Si
ZTJ[(Za]k> +Zrﬂxj chjkdjk’ t=1,...,T,

jeBk=1,..5s;

20
jeB k=15, (20)

jeB jeR jeB k=1
(22)
r
Zﬂt}’t > Mo, (6)
t=1
Sj
DY dp+ Y x <1, (23)
jeB k=1 jeR
x; >0, jER, (10)
where
1T
q(y) = max n- &;”‘d‘

t=1,...,T,
t=1,...,T.

st dr—n = -y,
d: =0,
Note that in g(y) we are essentially computing the CVaR for the
given solution {y; :t=1,...,T}.
Computing again its dual problem, the evaluation of g(y) can
also be obtained as:

(PrimalP)
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T
—Z)/t =1,
t=1

)/t§0.

Observe that the above problem, which we define as the Primal
Problem, is a continuous knapsack problem with lower bounds,
therefore it is well known that it can be solved by inspection. It
suffices to sort non-increasingly the y; values and assigning, in that
order, to each variable y; the minimum feasible amount.

Note that in the above formulation the feasible region does not
depend on the variables in MSWP1, so if we denote by 2 the set
of extreme point solutions of the feasible region of PrimalP, g(y)
is equivalent to:

qy) =max q
T

Stq<) ¥y y'ef (32)

t=1

Therefore, the problem MSWPO with discrete costs can be writ-
ten as:

Sj
max Z Z Cirdj +q

jeB k=1

(MasterP)

st. (2),3),4)

(Linear broker — dealer Constraints)

Ajg < Ajk,
ajk >0,

jGB,k:l,,..,S]‘, (20)
jeB,k:l,,..,sj,

sj sj
Ve = ZI‘]‘[(Zé]’k> +2Tj[Xj — chjkajk’ t=1,...,T,
k=1

jeB jer jeB k=1

(22)

ZtT=1 Ttye = Ko, (6)

D> Aty x<1, (23)

jeB k=1 jer
X =0, jeR, (10)
Q=YY yie (32)

This analysis allows us to state a Benders algorithm as follows:
BENDERS ALGORITHM:

Initialization Choose a solution y° of the master prob-
lem, solve the primal problem PrimalP for the chosen y°. Let
y0 be an optimal solution for PrimalP under y° and q(y°)
the corresponding optimal value. Take Y = {y°} and go to
iteration 7 = 1.

Iteration t =1,2,... Solve the master problem MasterP re-
placing 2 with Y. Let y* and g* be optimal solutions of such
problem.

If T =1 and q(y°) = q*. END.

If >1 and q(y*) = g*. END.

Otherwise, solve the primal problem PrimalP for y = y*. Let
y* be an optimal solution of such problem. Take y* = y*,
Y =YuU{y®}, and go to iteration 7 :=7 + 1.

6. Computational study and empirical application

This section is devoted to reporting some numerical experi-
ments conducted to: 1) compare the effectiveness of the methods
proposed to solve the different problems; 2) analyze the form of
the solutions within each model; and 3) compare the profiles of
the solutions, in terms of net values for the broker-dealer and ex-
pected return for the investor, across the three defined problems.

The computational experiments were carried out on a personal
computer with Intel(R) Core(TM) i7-2600 CPU, 3.40 gigahertz with
16.0 gigabytes RAM. The algorithms and formulations were imple-
mented and solved by using Xpress IVE 8.0.

In order to conduct the computational study, we take histori-
cal data from Dow Jones Industrial Average. We considered daily
returns of the 30 assets during one year (T =251 scenarios), and
these T historical periods are considered as equiprobable scenarios
(7wt = 1/T). Furthermore, to perform a richer comparison, we con-
sider different types of instances for the broker-dealer sets of pos-
sible transaction costs and different risk profiles for the investor.

We assume that the broker-dealer charges transaction costs in
a subset B of the securities. In the instances we generated we
compare the following cardinals for the set B: |B| = 30, 20, 10. In
addition, each cost pj, jeB was chosen from a discrete set P; =
{cﬂ,...,cjs}_} of admissible values. These parameters s; were ran-
domly generated in the interval [0, K] with K = 5, 15, 50.

The next table gathers the nine different types of instances (A
to I) considered in our computational study:

Once the set B and the parameter s; were set for each type of
instance (A-I), we generate the possible transaction costs ¢;; as fol-
lows:

o randomly generated in the interval [0.001,0.003] (cheaper costs)
in approximately 15% of the securities,

» randomly generated in the interval [0.002,0.008] (normal costs)
in approximately 70% of the securities,

» randomly generated in the interval [0.006,0.010] (more expen-
sive costs) in approximately 15% of the securities.

For each type of instance defined in Table 2, five different in-
stances are generated and the average values are reported in all
the tables and figures.

Different investor profiles are also considered varying the val-
ues of parameters (g and «. We assume three thresholds for the
expected return po = 0.0, 0.05, 0.1. This way, we are modeling in-
vestors willing not to lose anything, or to win at least, 5% or 10% of
their invested amount. In addition, we consider five different CVaR
risk levels, o = 0.01,0.05,0.5,0.9. Note that usually, the smaller
the «, the higher the risk-aversion.

6.1. Comparing solution methods

This section compares the computational performance of the
different methods proposed to solve each one of the problems.

For the first problem, BLIFP, we proposed two different formu-
lations: BLIFP1 and BLIFP2. We show in all our tables, the aver-
age CPU time expressed in seconds (CPU) and the number of in-
stances (#) solved to optimality (out of 5) for each formulation,
with a time limit of 3600 seconds.

Table 3 is organized in three blocks of rows. Each block reports
results for pg = 0.0,0.05,0.1, respectively. Each row in the table
refers to a type of instance (A, ..., I). The columns are also orga-
nized in four blocks. Each block reports the results for a different
risk level (o).

It can be observed that BLIFP2 is always faster and it solves
a higher number of problems than BLIFP1 to optimality. As an-
ticipated in Section 3.2 this behavior is explained by the smaller
dimension of BLIFP2 in terms of variables and constraints. For
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Table 2
Types of instances for the sets of possible
costs depending on the values of |B| and K.

K=5 K=15 K=50
Bl=30 A B C
Bl=20 D E F
Bl=10 G H I

example, when o = 0.5 and p = 0.0, BLIFP2 is able to solve all
the instances of types D and H in few seconds, while BLIFP1 is
not able to solve any of these instances. Therefore, we conclude
that formulation BLIFP2 is more effective than BLIFP1 for solving
BLIFP.

The second problem in our analysis is the one presented in
Section 4, namely ILBFP. For this situation, we have proposed a
single level LP formulation ILBFP — LP and Algorithm 1 to solve the
problem. We report the results concerning this model (when no
additional constrains on transaction costs are imposed in the set
of costs) in Table 4. It can be observed that the compact formula-
tion is faster than the algorithm: all the instances can be solved by
using the LP formulation in less than 7 seconds, meanwhile, the
algorithm needs more than 100 seconds to solve some of them.
However, the Algorithm 1 is also able to solve all the instances,
and, as discussed in Section 4, it can also be used when more gen-
eral sets of costs are considered.

Finally, for the social welfare problem, MSWP, we have also
proposed another single level formulation MSWPO and a Benders’
like algorithm. The primal problems in the Benders Algorithm were
solved by using the inspection method described in the previous
section. We report the results concerning this model in Table 5
with the same layout as Table 4. It can be observed that again the
compact formulation is much faster than the algorithm. In spite of
that, the algorithm is also able to solve the considered instances.

6.2. Comparing solutions and risk profiles within problems

This section analyzes the results provided by the two hierarchi-
cal problems in terms of broker-dealer’s net profit and risk and
expected return attained by the investor.

Fig. 1 compares the CVaR values obtained for the different risk
profiles for BLIFP. Each piecewise curve reports the CVaR values
for different a-levels and pp-levels and the nine market profiles
(A,...,I). We observe that the CVaR always increases with the
value of «, since this implies assuming more risk. It can also be
seen in these figures that, when the value of « increases, the CVaR
for the different values of o becomes closer for each value of «.
This can be explained because when o« =1, if the constraint that
the expected return must be greater or equal to 0 is satisfied, both
problems become the same, then, the bigger the o the more sim-
ilar the results for different values of py. Furthermore, for a given
o, the CVaR for smaller uq is higher because in these cases the
constraint on the expected return enlarges the feasible region as
compared with higher values of 1.

Fig. 2 compares, with a similar organization as Fig. 1,
the broker-dealer net profit for different investor’s risk pro-
files. Analogously, Fig. 3 represents the expected return for the
investor.

We observe in Fig. 2 that the results of the broker-dealer net
profit are bigger, in trend, for profiles with smaller values of «,
that is, for more risk-averse investments. In addition, we also show
in Fig. 3 that, in general, bigger expected returns are obtained for
higher values of «. The reason for this is that by increasing « one
is considering a wider range of values to compute the CVaR, and
then the result is a value closer to the expected return (note that
when o = 1 the expected return is equal to the CVaR).

Finally, to conclude with the analysis of BLIFP, we remark
that the smaller the cardinality of the set B the better the CVaR
and expected returns for the investor, but the worse the broker-
dealer net profit. This is expected since we are reducing the num-

Table 3
Comparison of the average CPU and number of instances (out of 5) solved to optimality, for BLIFP1 and BLIFP2.
a =0.05 a=0.1 a=05 a=09

Mo BLIFP1 BLIFP2 BLIFP1 BLIFP2 BLIFP1 BLIFP2 BLIFP1 BLIFP2
CPU # CPU # CPU # CPU # CPU # CPU # CPU # CPU #
0 A 3600 O 181 5 3600 O 916 4 3600 O 3291 1 3600 O 5 5
B 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O 3079 1
C 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O 3600 0 3600 O
D 3600 O 2 5 3204 1 17 5 3600 O 59 5 1603 3 2 5
E 3600 O 890 4 3600 O 2024 3 3600 O 3377 1 1882 3 3 5
F 3600 0 2895 1 3600 O 3600 O 3600 O 3600 O 2984 1 76 5
G 841 5 1 5 375 5 1 5 810 5 1 5 571 5 1 5
H 2282 2 2 5 3117 1 2 5 3600 O 7 5 2178 2 1 5
I 2959 1 1444 3 3600 O 1562 3 3600 O 939 4 1804 3 5 5
005 A 3600 O 28 5 3600 O 343 5 3600 O 3291 1 3156 1 5 5
B 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O 3079 1
C 3600 0 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O
D 3600 O 2 5 3204 1 3 5 3600 O 59 5 2217 2 2 5
E 3600 O 110 5 3600 O 1923 3 3600 O 3377 1 1793 3 3 5
F 3600 0 2905 1 3600 O 3600 O 3600 O 3600 O 2930 1 76 5
G 841 5 1 5 375 5 1 5 810 5 1 5 62 5 1 5
H 2282 2 1 5 3117 1 2 5 3600 O 7 5 153 5 1 5
I 2959 1 930 4 3600 O 1575 3 3600 O 939 4 2439 2 5 5
0.1 A 3600 O 6 5 3600 O 23 5 3600 O 3291 1 3156 1 5 5
B 3600 O 616 5 3600 O 1326 4 3600 O 3600 O 3600 O 3079 1
C 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O 3600 O
D 3600 O 1 5 3204 1 2 5 3600 O 59 5 2217 2 2 5
E 3600 O 24 5 3600 O 55 5 3600 O 3377 1 1793 3 3 5
F 3600 O 1277 4 3600 O 2227 2 3600 O 3600 O 2930 1 76 5
G 841 5 1 5 375 5 1 5 810 5 1 5 62 5 1 5
H 2282 2 1 5 3117 1 1 5 3600 O 7 5 153 5 1 5
| 2959 1 1477 3 3600 O 736 4 3600 O 939 4 2439 2 5 5
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Table 4
Comparison of the average CPU for ILBFP — LP and Algorithm 1.
o =0.05 a=01 a=05 a=09
o LP Alg. 1 LP Alg. 1 LP Alg. 1 LP Alg. 1
0.0 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29
B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97
C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49
D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18
E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80
F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21
G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45
H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32
I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73
0.05 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29
B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97
C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49
D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18
E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80
F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21
G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45
H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32
| 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73
0.1 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29
B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97
C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49
D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18
E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80
F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21
G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45
H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32
I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73
Table 5
Comparison of the average CPU for MSWPO0 and Benders Algorithm.
a =0.05 a=0.1 a=05 a=09
Mo MSWPO Ben. MSWPO Ben. MSWPO Ben. MSWPO Ben.
0 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29
B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97
C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49
D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18
E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80
F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21
G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45
H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32
I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73
0.05 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29
B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97
C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49
D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18
E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80
F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21
G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45
H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32
I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73
0.1 A 0.55 4.76 0.57 17.85 0.56 54.62 0.54 19.29
B 1.51 12.64 1.61 50.68 1.60 144.21 1.49 47.97
C 6.42 44.94 6.61 178.84 6.19 557.45 5.98 187.49
D 0.39 6.80 0.41 12.09 0.42 40.26 0.42 13.18
E 1.03 36.98 1.02 29.99 1.03 95.80 0.99 32.80
F 3.26 24.52 3.31 86.80 3.31 298.50 3.23 89.21
G 0.25 2.83 0.25 8.73 0.25 26.00 0.25 8.45
H 0.47 3.99 0.47 14.37 0.48 46.73 0.46 15.32
I 1.63 13.59 1.63 45.47 1.64 149.62 1.59 49.73

ber of securities where the broker-dealer could charge transaction
costs.

We proceed next to analyze the solutions of the second prob-
lem, namely ILBFP. We observe in Fig. 4 the same trend that in
the previous model: more risk-averse investments produce lower
CVaR for the investor (left-upper figure), and bigger profits for the
broker—dealer (right-upper figure), and decreasing the cardinality
of the set B results in a reduction of the broker-dealer profit. The

behavior of expected return (lower figure) is similar to those ob-
served in Fig. 3 for the corresponding BLIFP.

To finish this section, we consider the MSWP model. In this
case, we have also included in our analysis the comparison of the
objective function of this problem, namely the broker-dealer net
profit plus CVaR, for the different risk profiles with respect to ug
and «, and type of market (A,...,I). It can be seen in the upper-
right frame of Fig. 5, that the objective value increases with the
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Fig. 1. Values of the CVaR for BLIFP, for different o and 1o levels.
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Fig. 2. Values of the broker-dealer profit for BLIFP, for different values o and o levels.

value of «. The same trend is observed for the CVaR and the ex-
pected return (left figures). However, regarding the broker-dealer
profit we could not detect a clear pattern.

The interested reader is referred to an extended version of this
paper, see (Leal, Ponce, & Puerto, 2018), that includes all compar-
isons and graphical outputs gathered in our study. Furthermore,
one can find there a discrete Pareto front of MSWP for different
values of the parameter £.

6.3. Comparing solutions across problems
This last section of the computational results is devoted to com-

paring the solutions provided for the three problems considered in
this paper, namely BLIFP, ILBFP and MSWP. The goal is to ana-

lyze the solution across problems with respect to the goals of the
two parties: broker-dealer net profit, CVaR levels and expected re-
turns. Due to page length limitations in the paper version, we have
included in our figures only some comparisons for certain risk pro-
files. The interested reader is referred again to the extended ver-
sion of this paper (Leal et al., 2018), where we report comparisons
for a broader range of risk profiles.

Fig. 6 shows a comparison of the CVaR values attained in BLIFP
and ILBFP for different risk profiles (¢ =0.1 and g = 0.05 and
o =0.5 and pg =0.1, in the right and left figures, respectively).
We can observe in Fig. 6 that for each risk profile, the CVaR val-
ues are always higher in BLIFP than in ILBFP. Analogously, Fig. 7
compares the values of the broker-dealer profit for the two hi-
erarchical problems. It is also remarkable that BLIFP always re-
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Fig. 3. Values of the expected return for BLIFP, for different « and o levels.
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Fig. 4. Values of the CVaR (left-above), broker-dealer profit (right-above) and expected return (below) for ILBFP, for different o and po levels.

sults in higher profit values for each risk profile and all types
of instances. In these comparisons, we do not include the val-
ues for the social welfare problem because they are not compa-
rable due to the existence of multiple solutions (with the same
value for the objective function but a very different balance be-
tween the distribution of the CVaR and the broker-dealer profit).
As we mentioned above, we emphasize that in all our exper-
iments, BLIFP always gives higher profit for the broker-dealer
and better CVaR for the investor than ILBFP. In this regard, it
seems beneficial for the two parties to accept that the investor
knows the transaction costs on the securities before setting his
portfolio.

The last comparisons across models refer to the value of the
sum of broker-dealer profit plus the CVaR of the investor, in
Fig. 8, and the expected return value, in Fig. 9. These two fig-
ures show the corresponding values attained by the three pro-
posed problems, BLIFP, ILBFP and MSWP, for the different in-
stances (A,...,I) and two different risk profiles (see figures cap-
tions). As theoretically proved in Proposition 4, we can observe in
Fig. 8 that the value of the sum of the broker-dealer profit plus the
CVaR of the investor is always greater for the social welfare model
(MSWP) than for the other two hierarchical problems, namely
BLIFP and ILBFP. Finally, we compare the obtained expected return
values for the three problems. From Fig. 9, we can not conclude
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Fig. 5. Values of the CVaR (upper-left), broker-dealer profit (upper-right), expected return (lower-left) and objective value (lower-right) for different o and p levels in
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Fig. 7. Values of the broker-dealer profit for BLIFP and ILBFP, for o = 0.1 and o = 0.05 (left) and for & = 0.5 and o = 0.1 (right).

any dominating relationship among the problems with respect to
the expected return value and therefore, the numerical experi-
ments do not prescribe any preference relationship regarding the
expected return.

7. Concluding remarks and extensions

We have presented three single-period portfolio optimiza-
tion problems with transaction costs, considering two different

decision-makers: the investor and the financial intermediary. In-
cluding the financial intermediaries (broker-dealers) as decision-
makers leads to the incorporation of the transaction costs as deci-
sion variables in the portfolio selection problem. The action of both
decision-makers was assumed to be hierarchical. We have consid-
ered the situations where each of these decision-makers is leader
and have analyzed them. This hierarchical structure has been mod-
eled using bilevel optimization. In addition, a social welfare model
has also been studied.
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In all cases, it has been assumed that the broker-dealer has to
choose the unit transaction costs, for each security, from a discrete
set of possible costs, maximizing its benefits, and that the investor
aims to minimize the risk (optimizing his CVaR), ensuring a given
expected return. Considering continuous sets of possible values for
the transaction costs could be an interesting future research line.

In the considered models we assumed proportional transac-
tions cost; however, other transaction costs structures such as fixed
transaction costs or convex piecewise linear costs have been con-
sidered in the literature (for further details on transaction costs
structures we refer the reader to Mansini et al. (2015a)). These
cost structures could be incorporated in our models by slightly
modifying the resolution methods and increasing the complexity
of problem-solving. For instance, in order to incorporate fixed fees
and commissions, we should include some binary variables deter-
mining whether the investor chooses a security or not, and then
accounting for its contribution to the transaction costs. The gen-
eral tools from MILP can be adapted to solve the problem with this
new structure of costs. This could be another interesting future re-
search line.

In order to solve the three proposed problems, MILP and LP for-
mulations, as well as algorithms, have been proposed. By making
variations in the set of costs, and in the parameters to model the
CVaR and the expected return, o and pg, different broker-dealer
and investor profiles can be considered.

In our analysis in Sections 3 and 4, all the problems have
been presented, for simplicity, with only one follower. Neverthe-
less, they could be easily extended to more than one. In particu-
lar, in Section 3, the problem has been studied from the broker—
dealer point of view, that is, the broker-dealer aims to maxi-
mize its benefit by assuming that once the costs for the secu-
rities are set, a single investor will choose his portfolio accord-
ing to the described goals. We remark that the same procedure
could be applied to several followers (investors). In fact, in that
problem, F different profiles of followers (risk-averse, risk-taker,
etc.) could be considered, and the broker-dealer’s goal would
be maximizing the overall benefit for any linear function of its

costs. This approach would allow the broker-dealer to improve the
decision-making process in the cases where the same costs have
to be set for all the investors, but different investor’s profiles are
considered.

A detailed computational study has been conducted using
data from the Dow Jones Industrial Average. We have compared
the solution methods, the solutions and the risk profiles within
problems, and the solutions across them. From our computa-
tional experience, we have observed that the broker-dealer-leader
investor-follower problem results in better solutions for both, the
broker-dealer and the investor, in comparison with the investor-
leader broker-dealer-follower problem. Furthermore, the social
welfare model problem, as theoretically proved, in higher aggre-
gated benefits.
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